KETIV

Manufacturing Innovation. Together.

' This rule is used to place the shell plates in the tank body assembly

' It uses constraints to place each shell, and staggers them so that the seam
! alternates from one side of the tank to the other

Dim intTotalShells As Integer

' This variable calculates how many total shells is needed for this assembly
' This is based on the length of the tank, combined with information in the Excel spreadsheet
intTotalShells = SHELL Q 1 + SHELL Q 2

' The template had two pre-built constraints that would fail after running through the automation
' I found that I could fix them by just creating them at run time, rather than having them
! pre-baked into the template
' This happens sometimes, and you need to be creative to work around certain issues
Constraints.AddMate ("Mate:1", "ASME Dished Head:1", "Work Plane2", "",

"XY Plane", TANK L / 2 ul)
Constraints.AddMate ("Flush:2", "ASME Dished Head:2", "Work Plane2",

"ASME Dished Head:1", "Work Plane2", TANK L)

' First create the shell files in your local directory
Dim strOldFilename As String
Dim strNewFilenamel, strNewFilename2 As String

strOldFilename = TEMPLATE PATH & "\Tank Body Assy\Shell.ipt"

' These lines of code create copies of the shell plates, and give them filenames that include the shell width

If SHELL Q 1 >= 1 Then
strNewFilenamel = PROJECT PATH & PROJECT ID & "\Tank Body Assy\Shell - " & SHELL W 1 & " Wide - " & PROJECT ID & ".ipt"
System.IO.File.Copy(strOldFilename, strNewFilenamel)

End If

' Some tank lengths don't need two different widths in order to get the length to come out properly

' In that case, we don't want to create another shell plate model if we don't need it

If SHELL Q 2 >= 1 Then
strNewFilename2 = PROJECT PATH & PROJECT ID & "\Tank Body Assy\Shell - " & SHELL W 2 & " Wide - " & PROJECT ID & ".ipt"
System.IO.File.Copy(strOldFilename, strNewFilename?2)

End If

Dim strNewFilename As String
Dim intShellWidth As Integer
Dim intRunninglLength As Integer

' This variable will track our progress as we move down the tank and place the individual shell plates
intRunningLength = 0

' This For loop is the meat of placing the shell plates into our assembly
For j = 1 To intTotalShells
' If 7 is less than the total number of shell plates with thickness 1, then we need to insert more shell
! plates with thickness 1
' Otherwise, we need to insert new shell plates with thickness 2 (represented by the "SHELL W 2" parameter
If j <= SHELL Q 1 Then
strNewFilename = strNewFilenamel
intShellWidth = SHELL W 1
Else
strNewFilename = strNewFilename?2
intShellWidth = SHELL W 2
End If



KETIV

Manufacturing Innovation. Together.

Next

' Add the part to the assembly
Dim strBrowserName As String

' We are now ready to add the shell plates into our tank body assembly

' Note that we first define how we want the occurrence name of each shell plate to be listed in the model browser
' Then we place them into the assembly (at the origin)

strBrowserName = "Shell " & intShellWidth & " Wide:" & J

Dim oShell = Components.Add(strBrowserName, strNewEFilename)

' The Mod operator returns the remainder of a division calculation

' In this case, 1if j is 1, 1 divided by 2 has a remainder of 1 (the answer is 0, with a remainder of 1)

' If j is 2, then 2 divided by 2 is 1, and there is no remainder

' This trick lets us alternate what constraints we use as we place each shell plate

If j Mod 2 = 1 Then
' Notice that we use our "intRunningLength" variable to create an offset value for each new plate that gets placed
' Then at the end of the routine, we increase the value of "intRunningLength" by the current shell width,
! so that when we place the next shell, we have the next offset value ready to go
Constraints.AddFlush ("Flush:" &« 8 + (j - 1) * 3 + 1, "", "YZ Plane", strBrowserName, "YZ Plane")
Constraints.AddFlush ("Flush:" & 8 + (jJ - 1) * 3 + 2, "", "XZ Plane", strBrowserName, "XZ Plane'")
Constraints.AddFlush ("Flush:" & 8 + (7 - 1) * 3 + 3, strBrowserName, "XY Plane", "",

"Work Planel", intRunningLength + intShellWidth / 2 in)

Else
Constraints.AddMate ("Mate:" & 8 + (j - 1) * 3 + 1, "", "YZ Plane", strBrowserName, "YZ Plane")
Constraints.AddFlush ("Flush:" & 8 + (3 - 1) * 3 + 2, "", "XZ Plane", strBrowserName, "XZ Plane")
Constraints.AddMate ("Mate:" & 8 + (j - 1) * 3 + 3, "", "Work Planel", strBrowserName,
"XY Plane", (intRunningLength + intShellWidth / 2) * -1 in)
End If

' We don't need to push parameters for each instance if the parts are the same model
' This finds the first instance of shell width 1, and the first instance of shell width 2, and then passes
! the "TANK OD" and "SHELL W" parameters
If Jj =1 0Or j = SHELL Q 1 + 1 Then
Parameter (strBrowserName, "TANK OD") = TANK OD
Parameter (strBrowserName, "SHELL W") = intShellWidth
End If
intRunninglLength = intRunningLength + intShellWidth

' This next bit of code uses the Inventor API to suppress the assembly cuts for the manway and gunline if they are not used

in the assemblies

Dim oShellAssy As AssemblyDocument
oShellAssy = ThisApplication.Documents.ItemByName (PROJECT PATH & PROJECT ID & "\Tank Body Assy\Tank Body Assy - " & PROJECT ID & "
Dim oAssyDef As AssemblyComponentDefinition = oShellAssy.ComponentDefinition

If MANWAY = False Then oAssyDef.Features (l).Suppressed = True
If GUNLINE = False Then oAssyDef.Features

.iam")



