KETIV

Manufacturing Innovation. Together.

Sub Main
' First we need to get important design information from an Excel spreadsheet
' This information let's us know how many shell plates (and their sizes) we need based on the length of the tank
GetParametersFromExcel

' Before creating a new assembly, we need to make sure the inlet does not interfere with a hatch or tank seam on the top of the tank
' This is only applicable for tanks that have the inlet located on the top side of the tank body

' This will give an example of how to check inputs before committing to generating geometry

If ValidateSeamsAndHatches = False Then Exit Sub

' Setup project folders, including sub-folders for sub-assemblies
' Then create a new copy of the this file, and rename it based on the PROJECT ID
If SetupProjectAndTopAssembly = False Then Exit Sub

' Create a new copy of the tank body assembly based on an existing tank body assembly template
' Then add it to the assembly at the origin and update all the parts based on user inputs
CreateAndConfigureTankBody

' Create a new copy of the skid assembly based on an existing skid assembly template

' Then add it to the assembly at the origin and update all the parts based on user inputs and calculations
CreateAndConfigureSkid

' Create a new copy of the gunline assembly based on an existing gunline assembly template

' Then add it to the assembly at the origin and update all the parts based on user inputs and calculations
' Note that gunline assemblies can only be used on tanks with an OD of 60" or greater

If GUNLINE = True And TANK OD >= 60 in Then CreateAndConfigureGunline

' Place the selected manway into the assembly, on the rear dish plate
' Note that manway assemblies can only be used on tanks with an OD of 48" or greater
If MANWAY = True And TANK OD >= 48 in Then InsertManwayIntoAssembly

' Place the hatch into the assembly on top of the tank body assembly

' User may have none, 1 or 2 total hatches in the assembly

' User may select hatches in the front or in the back, or both

' Note that hatch assemblies can only be used on tanks with an OD of 60" or greater
InsertHatchesIntoAssembly

' Place the drain nozzles in the assembly

' Drain nozzles are always located near the bottom of the dish plates on each end

' User may select whether or not they want drains in the front and back, and what end connections to use

' Notes that if the tank diameter is 48" or below, 3" drains will be used; otherwise 4" drains will be used
InsertDrainNozzlesIntoAssembly

' Place the Sump Nozzle
If SUMP = True And TANK OD >= 60 in Then CreateAndConfigureSump

' Place the Inlet Nozzle as required
InsertInletIntoAssembly
End Sub

Sub CopyComponents (strFilePath As String, strAssemblyName As String, strFolderName As String)
' This function copies an assembly and all of its components to a new location
' It also updates the references in the new assembly so they point to the new components created
' If there are files in the assembly you do not want new copies of, then this routine will not work for you
' This uses the Inventor API to make a variable that references the assembly name passed to this routine
' It opens it up in the Inventor interface to see what is happening to the file



KETIV

Manufacturing Innovation. Together.
Dim oAsmDoc As AssemblyDocument
oAsmDoc = ThisApplication.Documents.Open (strFilePath & strAssemblyName, True)
' This is like selecting "Save As" in the Inventor interface, and saves a new copy of the assembly that was passed in
oAsmbDoc.SaveAs (PROJECT PATH & PROJECT ID & "\" & strFolderName & "\" & Left(strAssemblyName, strAssemblyName.Length - 4) & " - " & PROJECT ID & ".iam", False)
' This continues to use the more advanced API routines available with Inventor
A DocumentsEnumerator object will let us access the names of all the files referenced inside of the assembly
Dim oRefDocs As DocumentsEnumerator
oRefDocs = oAsmDoc.AllReferencedDocuments

' A document object represents a specific file reference in the Inventor assembly

Dim oRefDoc As Document
' We will iterate through all of the currently referenced documents, and make copies of them
For Each oRefDoc In oRefDocs
Dim strNewFileName As String
Dim strOldFileName As String
strOldFileName = strFilePath & oRefDoc.DisplayName
strNewFileName = PROJECT PATH & PROJECT ID & "\" & strFolderName & "\" & Left (oRefDoc.DisplayName, oRefDoc.DisplayName.Length - 4) & " - " & PROJECT ID & ".ipt"
' Here is where a new copy of the referenced files are made, with a new name based on PROJECT PATH and PROJECT ID
oRefDoc.SaveAs (strNewFileName, True)
' This code is like the "Replace Components" command inside of Inventor
It replaces the reference to the old part, with a reference to the new part we recently created
oAsmDoc.File.ReferencedFileDescriptors.Item(strOldFileName) .ReplaceReference (strNewFileName)
Next repeats this same process for all the files in our assembly, until we get to the end of the list
Next
End Sub

Sub GetParametersFromExcel ()
' This information is found on the "Shell Length Calcs" tab of the spreadsheet, and the first column represents the length of the tank
Each tank body can have up to two different shell plate widths to cover the exact length of the tank
' SP1 represents the width of the first shell plate, and SP2 represents the width of the second shell plate
' Length Check and Total Plates columns are just for verification of the data, and are not read into this rule
i = GoExcel.FindRow ("C:\Automation Starter Kit\SK Excel File.xlsx", "Shell Length Calcs", "Length", "=", TANK L)
SHELL W 1 = GoExcel.CurrentRowValue ("SP1 Width")
SHELL W 2 GoExcel.CurrentRowValue ("SP2 Width")
SHELL Q 1 GoExcel.CurrentRowValue ("SP1 Qty")
SHELL Q 2 = GoExcel.CurrentRowValue ("SP2 Qty")

This information let's us know key parameters that are used to design the skid assembly
This grabs several columns from the "Dish Depths" tab of the spreadsheet

j = GoExcel.FindRow ("C:\Automation Starter Kit\SK Excel File.xlsx", "Dish Depths", "Tank Diameter", "=", TANK OD)
DISH DEPTH = GoExcel.CurrentRowValue ("Dish Depth")

SKID FW = GoExcel.CurrentRowValue ("Width")

SKID FH = GoExcel.CurrentRowValue ("Height")

SKID FL THK = GoExcel.CurrentRowValue ("Flange")

If TANK OD >= 36 in Then SKID WEB THK = GoExcel.CurrentRowValue ("Web")

SKID BEND L = GoExcel.CurrentRowValue ("Bend L")

SKID ROD D = GoExcel.CurrentRowValue ("Rod D")

DRAIN DISH OFF = GoExcel.CurrentRowValue ("Drain Offset Dish")

This grabs information from the "Tubes" tab so that we can test if the input nozzle interferes with hatches or shell plate seams
k = GoExcel.FindRow ("C:\Automation Starter Kit\SK Excel File.xlsx", "Tubes", "Size", "=", Inlet Size)
INLET PIPE OD = GoExcel.CurrentRowValue ("OD")

End Sub

Function ValidateSeamsAndHatches () As Boolean
' This function validates that the inlet location does not interfere with a hatch or tank seam



KETIV

Manufacturing Innovation. Together.
' If there's no interference, the value "True" is returned

Otherwise, a messagebox let's the user know there was an error,
Dim blnValid As Boolean = True

and values will need to be re-entered

If INLET LOC = "Top" Then
Dim dblFrontLoc, dblBackLoc As Double
' These two variables represent the two Z coordinates of the inlet pipe,
dblFrontLoc = INLET OFF - INLET PIPE OD / 2
dblBackLoc = INLET OFF + INLET PIPE OD / 2
' This If statement does the math for the front hatch
F HATCH OFF represents the offset value of the hatch from the front of the tank body (not including dish depths)
SEAM CLEAR MIN represents the minimum clearance you want enforced to place inlets around seams

20 in represents how wide the actual hatch is;
If F HATCH Then

including the front and back sides

! this will need to become a variable if more hatches are used in the future

If (dblFrontLoc > F _HATCH OFF - SEAM CLEAR MIN And dblFrontLoc < F_HATCH OFF + 20 in + SEAM CLEAR MIN) Or _
(dblBackLoc > F HATCH OFF - SEAM CLEAR MIN And dblBackLoc < F HATCH OFF + 20 in + SEAM CLEAR MIN) Then
MessageBox.Show ("The tank inlet will need to be moved to avoid interference with the front hatch." & vbCrLf & _
"Avoid an inlet offset between " & F HATCH OFF - INLET PIPE OD / 2 - SEAM CLEAR MIN & Chr(34) & " and " &
F HATCH OFF + 20 in + INLET PIPE OD / 2 + SEAM CLEAR MIN & Chr(34) & ".")
blnvalid = False
' Show the main form before finishing the test and returning a value of False
iLogicForm.Show ("Configure Tank")
End If

End If

This If statement does the math for the rear hatch
' R HATCH OFF represents the offset value of the hatch from the rear of the tank body

(not including dish depths)
SEAM CLEAR MIN represents the minimum clearance you want enforced to place inlets around seams

20 in represents how wide the actual hatch is;
If R HATCH Then

! this will need to become a variable if more hatches are used in the future

If (dblFrontLoc > TANK L - R HATCH OFF - 20 in - SEAM CLEAR MIN And dblFrontLoc < TANK L - R HATCH OFF + SEAM CLEAR MIN) Or _
(dblBackLoc > TANK L - R HATCH OFF - 20 in - SEAM CLEAR MIN And dblBackLoc < TANK L - R HATCH OFF + SEAM CLEAR MIN) Then
MessageBox.Show ("The tank inlet will need to be moved to avoid interference with the rear hatch." & vbCrLf &
"Avoid an inlet offset between " & TANK L - R HATCH OFF - 20 in - INLET PIPE OD / 2 - SEAM CLEAR MIN & Chr (34) & " and " &
TANK L - R HATCH OFF + INLET PIPE OD / 2 + SEAM CLEAR MIN & Chr(34) & ".")
blnValid = False
' Show the main form before finishing the test and returning a value of False
iLogicForm.Show ("Configure Tank")
End If

End If

This If statement does the math for the seam clearance calculations
TANK L represents the length of the tank (not including dish depths)

SHELL QO 1 and SHELL Q 2 represent how many plates of width 1 and width 2 are required to create the tank body

SHELL W 1 and SHELL W 2 represent the widths of the shell plates used to create the tank shell body
If TANK L > 72 in Then

Dim dblSeamLocation As Double

The For statement will take us from one seam of the tank to the next,
For seam = 1 To SHELL Q 1 + SHELL Q 2 - 1
If seam <= SHELL Q 1 Then

dblSeamLocation = SHELL W 1 * seam

until we pass where the inlet is located

Else

dblSeamLocation = SHELL Q 1 * SHELL W 1 + (seam - SHELL Q 1) * SHELL W 2
End If

This statement will show you how to create a compound If statement using "And" and "Or" operators
If

(dblFrontLoc > dblSeamLocation - SEAM CLEAR MIN And dblFrontLoc < dblSeamLocation + SEAM CLEAR MIN) Or
(dblBackLoc > dblSeamLocation - SEAM CLEAR MIN And dblBackLoc < dblSeamLocation + SEAM CLEAR MIN) Or



KETIV

Manufacturing Innovation. Together.
(INLET OFF > dblSeamLocation - SEAM CLEAR MIN And INLET OFF < dblSeamLocation + SEAM CLEAR MIN) Then

MessageBox.Show ("The tank inlet will need to be moved to avoid interference with one of the seams." & vbCrLf &
"Avoid an inlet offset between " & dblSeamLocation - INLET PIPE OD / 2 - SEAM CLEAR MIN & Chr(34) & " and " &
dblSeamLocation + INLET PIPE OD / 2 + SEAM CLEAR MIN & Chr(34) & ".")

blnvalid = False

' Show the main form before finishing the test and returning a value of False

iLogicForm.Show ("Configure Tank")

End If
Next
End If
End If
ValidateSeamsAndHatches = blnValid
End Function

Function SetupProjectAndTopAssembly () As Boolean

' This function checks to make sure a project doesn't already exist that the user is requesting

' It then sets up a folder structure, and does a "Save As" to create a new top-level assembly that will be used

' This first set of statements uses the Windows System object to create a folder structure for our files

Dim blnSetupSucceeded As Boolean = True

' This statement first checks to see if the folder already exists

' If it does already exist, it won't bother creating the folder again

If System.IO.Directory.Exists (PROJECT PATH & PROJECT ID) = False Then
System.IO.Directory.CreateDirectory (PROJECT PATH & PROJECT ID)
System.IO.Directory.CreateDirectory (PROJECT PATH & PROJECT ID & "\Tank Body Assy")
System.IO.Directory.CreateDirectory (PROJECT PATH & PROJECT ID & "\Skid Assy")
' If user has configured a gunline, then create a folder to store its files
If GUNLINE Then System.IO.Directory.CreateDirectory (PROJECT PATH & PROJECT ID & "\Gunline Assy")
' If a user have configured a sump, then create a folder to store its files
If SUMP Then System.IO.Directory.CreateDirectory (PROJECT PATH & PROJECT ID & "\Sump Assy")

End If

' Now that we have our folder structure in place, we are ready to save the Master Assembly file
' It uses the path stored in the PROJECT PATH parameter, and the PROJECT ID to give the assembly a unique name

Dim sMasterAssy As String

sMasterAssy = PROJECT PATH & PROJECT ID & "\Tank Assembly - " & PROJECT ID & ".iam"
' We first check to make sure the master assembly file doesn't already exist, then save it if it doesn't
If System.IO.File.Exists(sMasterAssy) = False Then
ThisDoc.Document.SaveAs (sMasterAssy , False)
Else
MessageBox.Show ("Assembly Already Exists", "Master")
ilLogicForm.Show ("Configure Tank")
blnSetupSucceeded = False
End If

' Return whether or not we were successful creating the new folder structure and master assembly file
SetupProjectAndTopAssembly = blnSetupSucceeded
End Function

Sub CreateAndConfigureTankBody ()
' This code creates a new copy of the tank body assembly template in our new folder structure

' It then updates the tank body geometry based on values we pass to the assembly

Dim strNewTankBodyFileName As String

' This string represents the new name of our unique, copied tank body assembly file

strNewTankBodyFileName = PROJECT PATH & PROJECT ID & "\Tank Body Assy\Tank Body Assy - " & PROJECT ID & ".iam"

' We first check to make sure the tank body assembly file has not been previously created

If System.IO.File.Exists (strNewTankBodyFileName) = False Then
' This here is a sample of how to make a variable that represents an assembly document



KETIV

Manufacturing Innovation. Together.
' It uses the Inventor API, which you can use freely (for the most part) throughout iLogic rules
Dim subAssyl As AssemblyDocument
' This statement tells subAssyl to represent the template file, and opens it up in the Inventor interface
subAssyl = ThisApplication.Documents.Open (TEMPLATE PATH & "Tank Body Assy\Tank Body Assy.iam", True)
' This code is like selecting "File Save As" in the Inventor interface, and we now have our new file saved
subAssyl.SaveAs (strNewTankBodyFileName, False)
' This can be taken from an ilLogic snippet, and is used to insert components into assemblies
' This code inserts our newly created tank body assembly into our master tank assembly file
Dim componentA = Components.Add("Tank Body Assy:1", strNewTankBodyFileName, position := Nothing, grounded := True, visible := True, appearance := Nothing)
' This will now close the new tank body assembly file
subAssyl.Close
' This code calculates the horizontal and vertical locations of our gunline assembly (for later use)
GUNLINE HOR OFF = Round((TANK OD / 2) * .6667)
GUNLINE VERT OFF = Round((TANK OD / 2) * .25)
' This code represents our typical manway offset, which is 26" above the bottom of the tank

MANWAY VERT OFF = -TANK OD / 2 + 26

' These statements pass parameters from our master assembly file into the tank body assembly file
Parameter ("Tank Body Assy:1", "PROJECT ID") = PROJECT ID

Parameter ("Tank Body Assy:1", "PROJECT PATH") = PROJECT PATH
Parameter ("Tank Body Assy:1", "TANK OD") = TANK OD

Parameter ("Tank Body Assy:1", "TANK L") = TANK L

Parameter ("Tank Body Assy:1", "SHELL W 1") = SHELL W 1

Parameter ("Tank Body Assy:1", "SHELL W 2") = SHELL W 2

Parameter ("Tank Body Assy:1", "SHELL Q 1") SHELL Q 1

Parameter ("Tank Body Assy:1", "SHELL Q 2") = SHELL Q 2

Parameter ("Tank Body Assy:1", "GUNLINE SIZE") = GUNLINE SIZE
Parameter ("Tank Body Assy:1", "GUNLINE VERT OFF") = GUNLINE VERT OFF
Parameter ("Tank Body Assy:1", "GUNLINE HOR OFF") = GUNLINE HOR OFF
Parameter ("Tank Body Assy:1", "MANWAY VERT OFF") = MANWAY VERT OFF
Parameter ("Tank Body Assy:1", "GUNLINE") = GUNLINE

Parameter ("Tank Body Assy:1", "MANWAY") = MANWAY

Parameter ("Tank Body Assy:1", "F HATCH") = F_ HATCH

Parameter ("Tank Body Assy:1", "F HATCH OFF") = F HATCH OFF
Parameter ("Tank Body Assy:1", "R HATCH") = R HATCH

Parameter ("Tank Body Assy:1", "R HATCH OFF") = R HATCH OFF
Parameter ("Tank Body Assy:1", "INLET OFF") = INLET OFF

Parameter ("Tank Body Assy:1", "INLET PIPE OD") = INLET PIPE OD

' Once all the parameters are updated in the tank body assembly file, we want to run their rules

This will allow the tank body assembly to update all its own parts and components itself
iLogicVb.RunRule ("Tank Body Assy:1", "Size Dish")
iLogicVb.RunRule ("Tank Body Assy:1", "Calculate and Place Shells")

End If
End Sub

Sub CreateAndConfigureSkid()
' This code creates a new copy of the skid assembly template in our new folder structure
' It then updates the skid geometry based on values we pass to the assembly
Dim strNewSkidFilename As String
' This string represents the new name of our unique, copied skid assembly file
strNewSkidFilename = PROJECT PATH & PROJECT ID & "\Skid Assy\Skid Assy - " & PROJECT ID & ".iam"

' We first check to make sure the skid assembly file has not been previously created
If System.IO.File.Exists (strNewSkidFilename) = False Then
' This here is a sample of how to make a variable that represents an assembly document
' It uses the Inventor API, which you can use freely (for the most part) throughout iLogic rules
Dim subAssyl As AssemblyDocument
' This code uses the "CopyComponents" subroutine (see above) to copy the skid assembly, and all its children



KETIV

Manufacturing Innovation. Together.

' This will not work if you don't want some of the parts in the assembly to have unique copies
The function also changes the references in the skid assembly to point to the newly created part files
CopyComponents (TEMPLATE PATH & "Skid Assy\", "Skid Assy.iam", "Skid Assy")
' This statement tells subAssyl to represent the template file, and opens it up in the Inventor interface
subAssyl = ThisApplication.Documents.Open (strNewSkidFilename, True)
' This statement changes the occurrence names of the existing skid components in the model browser
This will allow the rule that passes parameters in our skid sub-assembly to still work
subAssyl.ComponentDefinition.Occurrences (1) .Name = "Skid-1:1"
subAssyl.ComponentDefinition.Occurrences (2) .Name = "Skid-1:2"
subAssyl. Save
subAssyl.Close
' This can be taken from an ilLogic snippet, and is used to insert components into assemblies
This code inserts our newly created skid assembly into our master tank assembly file

Dim componentB = Components.Add("Skid Assy:1", strNewSkidFilename, position := Nothing, grounded := True, visible := True, appearance := Nothing)
' Change our flange radius if the TANK OD is 30" or less

If TANK OD <= 30 in Then SKID FLG RAD = .1 in

' These statements pass parameters from our master assembly file into the skid assembly file
Parameter ("Skid Assy:1", "PROJECT ID") = PROJECT ID

Parameter ("Skid Assy:1", "PROJECT PATH") = PROJECT PATH

Parameter ("Skid Assy:1", "TANK OD") = TANK OD

Parameter ("Skid Assy:1", "TANK L") = TANK L

Parameter ("Skid Assy:1", "SHELL W 1") = SHELL W 1

Parameter ("Skid Assy:1", "SHELL W 2") = SHELL W 2

Parameter ("Skid Assy:1", "SHELL QO 1") = SHELL Q 1

Parameter ("Skid Assy:1", "SHELL Q 2") = SHELL Q 2

Parameter ("Skid Assy:1", "SKID FW") = SKID FW

Parameter ("Skid Assy:1", "SKID FH") = SKID FH

Parameter ("Skid Assy:1", "SKID FL THK") = SKID FL THK

Parameter ("Skid Assy:1", "SKID FLG RAD") = SKID FLG RAD

Parameter ("Skid Assy:1", "SKID WEB THK") = SKID WEB THK

Parameter ("Skid Assy:1", "SKID BEND L") = SKID BEND L

Parameter ("Skid Assy:1", "SKID ROD D") = SKID ROD D

Parameter ("Skid Assy:1", "DISH DEPTH") = DISH DEPTH

Once all the parameters are updated in the skid assembly file, we want to run its creation rule
This will allow the skid assembly to update all its own parts and components itself
iLogicVb.RunRule ("Skid Assy:1", "Create Skid")

End If
End Sub

Sub CreateAndConfigureGunline ()
' This code creates a new copy of the gunline assembly template in our new folder structure
It then updates the gunline geometry based on values we pass to the assembly
Dim strNewGunlineFilename As String
' This string represents the new name of our unique, copied gunline assembly file
strNewGunlineFilename = PROJECT PATH & PROJECT ID & "\Gunline Assy\Gunline Assy - " & PROJECT ID & ".iam"

We first check to make sure the gunline assembly file has not been previously created

If it hasn't yet been created, we do a Windows Copy operation to make a new copy in our new folder
If System.IO.File.Exists(strNewGunlineFilename) = False Then

System.IO.File.Copy (TEMPLATE PATH & "Gunline Assy\Gunline Assy.iam", strNewGunlineFilename)

End If
' In order to locate where to put the gunline assembly in our master assembly file, we will use matrix positioning

See presentation included in this kit that explains how matrix positioning works - it's easier than it looks or sounds

Dim matrixC = ThisDoc.Geometry.Matrix (-1, 0, 0, GUNLINE HOR OFF, 0, 1, 0, -GUNLINE VERT OFF, 0, O, -1, TANK L / 2 + DISH DEPTH, 0, 0, 0, 1)
' This can be taken from an ilLogic snippet, and is used to insert components into assemblies

This code inserts our newly created gunline assembly into our master tank assembly file



KETIV

Manufacturing Innovation. Together.

End Sub

' Instead of placing at the origin, it places it based on our input matrix we created (matrixC)
' Note that we are grounding all geometry, and we are not using any constraints to place the assembly

Dim componentC = Components.Add("Gunline Assy:1", strNewGunlineFilename, position := matrixC, grounded := True, visible := True, appearance := Nothing)
' These statements pass parameters from our master assembly file into the gunline assembly file
Parameter ("Gunline Assy:1", "TANK OD") = TANK OD

Parameter ("Gunline Assy:1", "TANK L") = TANK L

Parameter ("Gunline Assy:1", "PROJECT ID") = PROJECT ID

Parameter ("Gunline Assy:1", "PROJECT PATH") = PROJECT_ PATH

Parameter ("Gunline Assy:1", "SHELL Q 1") = SHELL Q 1

Parameter ("Gunline Assy:1", "SHELL Q 2") = SHELL Q 2

Parameter ("Gunline Assy:1", "GUNLINE SIZE") = GUNLINE SIZE

Parameter ("Gunline Assy:1", "GUNLINE F FL TYPE") = GUNLINE F FL TYPE

Parameter ("Gunline Assy:1", "GUNLINE R FL TYPE") = GUNLINE R FL TYPE

Parameter ("Gunline Assy:1", "GUNLINE F FL END") = GUNLINE F FL END

Parameter ("Gunline Assy:1", "GUNLINE R FL END") = GUNLINE R FL END

Parameter ("Gunline Assy:1", "DISH DEPTH") = DISH DEPTH

' Once all the parameters are updated in the gunline assembly file, we want to run its creation rule
' This will allow the gunline assembly to update all its own parts and components itself

iLogicVb.RunRule ("Gunline Assy:1", "Set Gunline Size")
iLogicVb.RunRule ("Gunline Assy:1", "Calculate Gunline Spacing")
iLogicVb.RunRule ("Gunline Assy:1", "Push Parameters")
iLogicVb.RunRule ("Gunline Assy:1", "Spray Nozzle Length")
ilogicVb.RunRule ("Gunline Assy:1", "Assemble Flanges")

Sub InsertManwayIntoAssembly ()

' This code places the selected manway into our assembly, if applicable
' Manways are always place on the rear dish head plate
We first need to calculate the Z-value to place our manway so it doesn't interfere with the dish head plate
Dim dblHorizontalOffset As Double
' This calculates our initial horizontal offset based on the length of the tank, and placement on the dish head plate
If MANWAY VERT OFF < O Then
dblHorizontalOffset = - (TANK L / 2 - (MANWAY VERT OFF / (TANK_OD / 2)) * DISH DEPTH + MANWAY HOR OFF)

Else
dblHorizontalOffset = - (TANK L / 2 + (MANWAY VERT OFF / (TANK OD / 2)) * DISH DEPTH + MANWAY HOR OFF)
End If
' Even though we made an initial calculation for horizontal placement, there was some interference with the dish head plate
' With more time, I could have come up with a better calculation than the one above that would have been more accurate
' For the sake of timing and getting this done, I added different offset values based on empirical testing
' First, we start with the code to place a 21 inch manway, if that has been selected
If MANWAY SIZE = 21 in Then

If TANK OD >= 54 in And TANK OD <= 90 in Then dblHorizontalOffset -= 6 in

If TANK OD >= 96 in And TANK OD <= 102 in Then dblHorizontalOffset -= 4 in

If TANK OD >= 108 in And TANK OD <= 114 in Then dblHorizontalOffset -= 2.5 in
If TANK OD = 120 Then dblHorizontalOffset -= 1 in

If TANK OD = 138 Then dblHorizontalOffset += 1 in
If TANK OD = 144 Then dblHorizontalOffset += 2 in
' In order to locate where to put the manway assembly in our master assembly file, we will use matrix positioning
' See presentation included in this kit that explains how matrix positioning works - it's easier than it looks or sounds
Dim matrixD = ThisDoc.Geometry.Matrix(-1, 0, 0, O, 0, 1, 0, MANWAY VERT OFF, O, 0, -1, dblHorizontalOffset, 0, 0, 0, 1)
' This can be taken from an ilLogic snippet, and is used to insert components into assemblies
' This code inserts the selected manway assembly into our master tank assembly file
' Instead of placing at the origin, it places it based on our input matrix we created (matrixD)
' Note that we are grounding all geometry, and we are not using any constraints to place the manway
Dim componentD = Components.Add("Manway 21 Inch:1", LIBRARY PATH & "Manways\21l Inch\21 in Manway.iam",
position := matrixD, grounded := True, visible := True, appearance

Nothing)



KETIV

Manufacturing Innovation. Together.
' Next is the code to place the 22 inch manway, 1f that has been selected

ElseIf MANWAY SIZE = 22 in Then

If TANK OD >= 54 in And TANK OD <= 60 in Then dblHorizontalOffset -= 3 in
If TANK OD >= 66 in And TANK OD <= 78 in Then dblHorizontalOffset -= 4 in
If TANK OD >= 84 in And TANK OD <= 90 in Then dblHorizontalOffset -= 2 in
If TANK OD >= 96 in And TANK OD <= 102 in Then dblHorizontalOffset -= 1 in

If TANK OD >= 132 in And TANK OD <= 138 in Then dblHorizontalOffset += 2 in
If TANK OD 144 Then dblHorizontalOffset += 3 in
' In order to locate where to put the manway assembly in our master assembly file, we will use matrix positioning
' See presentation included in this kit that explains how matrix positioning works - it's easier than it looks or sounds
Dim matrixE = ThisDoc.Geometry.Matrix(0, 0, 1, 0, -1, 0, 0, MANWAY VERT OFfr, 0, -1, 0, dblHorizontalOffset, 0, 0, 0, 1)
' This can be taken from an ilLogic snippet, and is used to insert components into assemblies
' This code inserts the selected manway assembly into our master tank assembly file
' Instead of placing at the origin, it places it based on our input matrix we created (matrixE)
' Note that we are grounding all geometry, and we are not using any constraints to place the manway
Dim componentE = Components.Add("Manway 22 Inch:1", LIBRARY PATH & "Manways\22 Inch\22 in Manway.iam",
position := matrixE, grounded := True, visible := True, appearance

Nothing)

Else
If TANK OD >= 114 in And TANK OD <= 126 in Then dblHorizontalOffset += 2 in

If TANK OD >= 132 in And TANK OD <= 138 in Then dblHorizontalOffset += 3 in
If TANK OD = 144 in Then dblHorizontalOffset += 4.5 in
' In order to locate where to put the manway assembly in our master assembly file, we will use matrix positioning
' See presentation included in this kit that explains how matrix positioning works - it's easier than it looks or sounds
Dim matrixF = ThisDoc.Geometry.Matrix(0, 0, 1, 0, -1, 0, 0, MANWAY VERT OFF, O, -1, 0, dblHorizontalOffset, 0, 0, 0, 1)
' This can be taken from an iLogic snippet, and is used to insert components into assemblies
' This code inserts the selected manway assembly into our master tank assembly file
' Instead of placing at the origin, it places it based on our input matrix we created (matrixF)
' Note that we are grounding all geometry, and we are not using any constraints to place the manway
Dim componentF = Components.Add("Manway 25 Inch:1", LIBRARY PATH & "Manways\25 Inch\25 in Manway.iam", _
position := matrixF, grounded := True, visible := True, appearance := Nothing)
End If
End Sub

Sub InsertHatchesIntoAssembly ()
' This code places the hatch into our assembly (up to two times), if applicable
' Hatches are always place on the top of the tank body assembly, at either end of the tank
' This set of commands is to place the front hatch, if the user has opted to include one
If F HATCH Then
' In order to locate where to put the hatch assembly in our master assembly file, we will use matrix positioning
' See presentation included in this kit that explains how matrix positioning works - it's easier than it looks or sounds
Dim matrixG = ThisDoc.Geometry.Matrix(l, 0, 0, 10.625, 0, 1, 0, TANK OD / 2 + 3, 0, 0, 1, TANK L / 2 - F HATCH OFF - 21.5, 0, 0, 0, 1)
' This can be taken from an ilLogic snippet, and is used to insert components into assemblies
' This code inserts the hatch assembly into our master tank assembly file
' Instead of placing at the origin, it places it based on our input matrix we created (matrixG)
' Note that we are grounding all geometry, and we are not using any constraints to place the hatch
Dim componentG = Components.Add("Front Hatch:1", LIBRARY PATH & "Hatches\20 Inch\Mw-SW 103.iam",
position := matrixG, grounded := True, visible := True, appearance := Nothing)

End If

If R HATCH Then
' In order to locate where to put the hatch assembly in our master assembly file, we will use matrix positioning

' See presentation included in this kit that explains how matrix positioning works - it's easier than it looks or sounds

Dim matrixH = ThisDoc.Geometry.Matrix(-1, 0, 0, -10.625, 0, 1, 0, TANK OD / 2 + 3, 0, 0, -1, -TANK L / 2 + R HATCH OFF + 21.5, 0, 0, 0, 1)
' This can be taken from an ilLogic snippet, and is used to insert components into assemblies

' This code inserts the selected manway assembly into our master tank assembly file

' Instead of placing at the origin, it places it based on our input matrix we created (matrixH)

' Note that we are grounding all geometry, and we are not using any constraints to place the manway



KETIV

Manufacturing Innovation. Together.

End Sub

Dim componentH = Components.Add("Rear Hatch:1", LIBRARY PATH & "Hatches\20 Inch\MW-SW 103.iam",
position := matrixH, grounded := True, visible :=
End If

Sub InsertDrainNozzlesIntoAssembly ()

' This code places the drain nozzles into our assembly, if applicable
' Each drain nozzle consists of a pipe, and an end connection (i.e. flange, capped flange, or valve)
' One drain nozzle can be placed on the front head dish plate, and another can be placed on the rear head dish plate
' First, we set the size of the drain nozzles based on the OD of the tank
If TANK OD <= 48 in Then
DRAIN SIZE = 3 in
Else
DRAIN SIZE = 4 in
End If

' If they have selected to have a drain in front, then place it at the bottom of the tank on the front dish head plate
Dim strDrainValveName, strDrainPipeName As String
' These strings represent the filenames (and paths) for the both the pipe and the end connection

strDrainValveName = LIBRARY PATH & "Valves\Butterfly\" & DRAIN SIZE & " Inch\Slip-On Welding to Threaded Valve - " & DRAIN SIZE & ".iam"

strDrainPipeName = LIBRARY PATH & "Flanges\ANSI B36.10 XS - " & DRAIN SIZE & ".ipt"

' This variable will represent the offset in the front based on the end connection type
Dim dblFrontHorOffset As Double
If DRAIN F FL END = "Valve" Then
dblFrontHorOffset = 12
Else
dblFrontHorOffset = 9
End If

' This variable will represent the offset in the rear based on the end connection type
Dim dblRearHorOffset As Double
If DRAIN F FL END = "Valve" Then
dblRearHorOffset = 12
Else
dblRearHorOffset = 9
End If

' This code will determine if a front drain is required, and then run code to place it if it is
If DRAIN F Then
' This uses the "GetFlangeFilename" function (near the bottom of this rule)
' It will automatically determine the filename based on flange type, flange end connection, and drain size
Dim strFrontDrainFlangeName = GetFlangeFilename (DRAIN F FL TYPE, DRAIN F FL END, DRAIN SIZE)
' This uses the "GetFrontOrRearMatrix" function (near the bottom of this rule)
' This will automatically determine the location matrix based on several factors
Dim matrixI = GetFrontOrRearMatrix (DRAIN F FL TYPE, DRAIN F FL END, DRAIN SIZE, dblFrontHorOffset, DRAIN SIZE,
' This can be taken from an ilLogic snippet, and is used to insert components into assemblies
' This code inserts the selected end connection part or assembly into our master tank assembly file
' Instead of placing at the origin, it places it based on our input matrix we created (matrixI)
' Note that we are grounding all geometry, and we are not using any constraints to place the end connection

True, appearance

"Front",

Dim componentI = Components.Add("Front Drain:1", strFrontDrainFlangeName, position := matrixI, grounded := True, visible

' We create a location matrix and place the pipe, to complete the components needed for the front drain

:= Nothing)

"Bottom")

Dim matrixJ = ThisDoc.Geometry.Matrix(-1, 0, 0, 0, 0, 1, 0, -TANK OD / 2 + DRAIN SIZE, 0, 0, -1, TANK L / 2 + (DRAIN SIZE

Dim componentJ = Components.Add("Front Drain Pipe:1", strDrainPipeName, position := matrixJ, grounded := True,

visible

:= True,

/ (TANK OD / 2))

True,

appearance

appearance

* DISH DEPTH + 9 in,

:= Nothing)

Nothing)

0,



KETIV

Manufacturing Innovation. Together.

End Sub

' This code will determine if a rear drain is required, and then run code to place it if it is
If DRAIN R Then
' This uses the "GetFlangeFilename" function (near the bottom of this rule)
' It will automatically determine the filename based on flange type, flange end connection, and drain size
Dim strRearDrainFlangeName = GetFlangeFilename (DRAIN R FL TYPE, DRAIN R FL END, DRAIN SIZE)
' This uses the "GetFrontOrRearMatrix" function (near the bottom of this rule)
' This will automatically determine the location matrix based on several factors
Dim matrixK = GetFrontOrRearMatrix(DRAIN_R_FL_TYPE, DRAIN R FL END, DRAIN SIZE, dblRearHorOffset, DRAIN SIZE, "Rear", "Bottom")
' This can be taken from an ilLogic snippet, and is used to insert components into assemblies
' This code inserts the selected end connection part or assembly into our master tank assembly file
' Instead of placing at the origin, it places it based on our input matrix we created (matrixK)
' Note that we are grounding all geometry, and we are not using any constraints to place the end connection
Dim componentK = Components.Add("Rear Drain:1", strRearDrainFlangeName, position := matrixK, grounded := True, visible := True, appearance := Nothing)
' We create a location point and place the pipe, to complete the components needed for the rear drain
Dim pointL = ThisDoc.Geometry.Point (0, -TANK OD / 2 + DRAIN SIZE, -(TANK L / 2 + (DRAIN SIZE / (TANK OD / 2)) * DISH DEPTH + 9 in))
Dim componentlL = Components.Add("Rear Drain Pipe:1", strDrainPipeName, position := pointL, grounded := True, visible := True, appearance := Nothing)
End If

Sub CreateAndConfigureSump ()

' This code creates a new copy of the sump assembly template and places it in our new folder structure
' It then updates the sump geometry based on values we pass to the assembly

Dim strNewSumpFilename As String

' This string represents the new name of our unique, copied sump assembly file

strNewSumpFilename = PROJECT PATH & PROJECT ID & "\Sump Assy\Sump Pipe Assy - " & PROJECT ID & ".iam"

' We first check to make sure the sump assembly file has not been previously created
' If it hasn't yet been created, we do a Windows Copy operation to make a new copy in our new folder
' We also make copies of the part files that will go into our sump assembly

If System.IO.File.Exists (strNewSumpFilename) = False Then
System.IO.File.Copy (TEMPLATE PATH & "Sump Assy\Sump Pipe Assy.iam", PROJECT PATH & PROJECT ID & "\Sump Assy\Sump Pipe Assy - " & PROJECT ID & ".iam")
System.IO.File.Copy (TEMPLATE PATH & "Sump Assy\Sump-Angled Pipe.ipt", PROJECT PATH & PROJECT ID & "\Sump Assy\Sump-Angled Pipe - " & PROJECT ID & ".ipt")
System.IO.File.Copy (TEMPLATE PATH & "Sump Assy\Sump-Straight Pipe.ipt", PROJECT PATH & PROJECT ID & "\Sump Assy\Sump-Straight Pipe - " & PROJECT ID & ".ipt")

' This here is a sample of how to make a variable that represents an assembly document
' It uses the Inventor API, which you can use freely (for the most part) throughout iLogic rules
Dim oSumpAssy As Inventor.AssemblyDocument
' This statement tells oSumpAssy to represent the newly created file, and opens it up in the Inventor interface
oSumpAssy = ThisApplication.Documents.Open (strNewSumpFilename, True)
' When the copied sump assembly initially opens, it will reference the old part files in our template folder
' We need to change that so that the newly copied angle and straight pipe files are referenced by the assembly
' The following code uses the Inventor API functionality to do that
' This is similar to selecting the "Replace Components" command in the Inventor application
Dim strOldAnglePipe, strNewAnglePipe As String
strOldAnglePipe = TEMPLATE PATH & "Sump Assy\Sump-Angled Pipe.ipt"
strNewAnglePipe = PROJECT PATH & PROJECT ID & "\Sump Assy\Sump-Angled Pipe - " & PROJECT ID & ".ipt"
oSumpAssy.File.ReferencedFileDescriptors.Item(strOldAnglePipe) .ReplaceReference (strNewAnglePipe)
Dim strOldStraightPipe, strNewStraightPipe As String
strOldStraightPipe = TEMPLATE PATH & "Sump Assy\Sump-Straight Pipe.ipt"
strNewStraightPipe = PROJECT PATH & PROJECT ID & "\Sump Assy\Sump-Straight Pipe - " & PROJECT ID & ".ipt"
oSumpAssy.File.ReferencedFileDescriptors.Item(strOldStraightPipe) .ReplaceReference (strNewStraightPipe)
' Once we've updated the file references in the sump assembly file, we can save and then close it
OoSumpAssy.Save
oSumpAssy.Close
End If

' The sump assembly was created in the exact same orientation as our master tank assembly
' This means we don't need to rotate the sump assembly when placing it into the master tank assembly



KETIV

Manufacturing Innovation. Together.

End Sub

' That means we don't need a matrix, but can just define a point (X, Y, Z coordinates) of where to place it
Dim pointO = ThisDoc.Geometry.Point (0, -TANK OD / 2 + SUMP H, TANK L / 2)

' This can be taken from an ilLogic snippet, and is used to insert components into assemblies

' This code inserts our newly created sump pipe assembly into our master tank assembly file

' Instead of placing at the origin, it places it based on our input point we created (pointO)

' Note that we are grounding all geometry, and we are not using any constraints to place the assembly

Dim componentO = Components.Add("Sump Pipe Assembly:1", strNewSumpFilename, position := pointO, grounded := True, visible := True,
' These statements pass parameters from our master assembly file into the sump pipe assembly file

Parameter ("Sump Pipe Assembly:1", "PROJECT ID") = PROJECT ID

Parameter ("Sump Pipe Assembly:1", "PROJECT PATH") = PROJECT PATH

Parameter ("Sump Pipe Assembly:1", "SUMP SIZE") = SUMP_ SIZE

Parameter ("Sump Pipe Assembly:1", "SUMP H") = SUMP H

Parameter ("Sump Pipe Assembly:1", "SUMP PIPE PROJ") = SUMP PIPE PROJ

Parameter ("Sump Pipe Assembly:1", "TANK OD") = TANK OD

Parameter ("Sump Pipe Assembly:1", "DISH DEPTH") = DISH DEPTH

' Once all the parameters are updated in the sump pipe assembly file, we want to run its update rule

' This will allow the sump pipe assembly to update all its own parts and components itself

iLogicVb.RunRule ("Sump Pipe Assembly:1", "Update Children Parts")

' Once the sump pipe assembly is created and placed, it still needs an end connection

' This uses the "GetFlangeFilename" function (near the bottom of this rule)

' It will automatically determine the filename based on flange type, flange end connection, and drain size

Dim strFlangeName As String = GetFlangeFilename (SUMP_FL TYPE, SUMP FL END, SUMP SIZE)

' This uses the "GetFrontOrRearMatrix" function (near the bottom of this rule)

' This will automatically determine the location matrix based on several factors

Dim matrixP = GetFrontOrRearMatrix (SUMP FL TYPE, SUMP FL END, SUMP H, SUMP PIPE PROJ, SUMP SIZE, "Front", "Bottom")
' This can be taken from an iLogic snippet, and is used to insert components into assemblies

' This code inserts the selected end connection part or assembly into our master tank assembly file

' Instead of placing at the origin, it places it based on our input matrix we created (matrixP)

' Note that we are grounding all geometry, and we are not using any constraints to place the end connection

Dim componentP = Components.Add("Sump Valve:1", strFlangeName, position := matrixP, grounded := True, visible := True, appearance

Sub InsertInletIntoAssembly ()

' This code places the inlet nozzle into our assembly

' The inlet nozzle consists of a pipe and an end connection (i.e. flange, capped flange, or valve)

' The user has the option to place the inlet nozzle on the top of the tank, or the front dish head plate

' If they place it on the dish head plate, it must be located near the top of the tank, and not the bottom half
Dim strInletTubeName, strFlangeFile As String

' No new geometry is created for inlets - they only use existing parts from the library
' This let's us find the right name of the tube (or pipe) based on the inlet size
strInletTubeName = LIBRARY PATH & "Flanges\ANSI B36.10 XS - " & INLET SIZE & ".ipt"

' This code uses our "GetFlangeFilename" function to find the name of the end connection based on
! flange type, flange end connection, and inlet size
strFlangeFile = GetFlangeFilename (INLET FL TYPE, INLET FL END, INLET SIZE)

' Define the matrices that will be needed to place the inlet nozzle, including the pipe and flange
Dim matrixM, matrixN As DocumentUnitsMatrix

Dim strInletPipeBrowserName, strInletFlangeBrowserName As String

' If the user wants to place the inlet nozzle on the top, use these locating matrices

If INLET LOC = "Top" Then
' These strings will be used to set the occurrence names in the browser to indicate they are installed on top of the tank
strIinletPipeBrowserName = "Top Inlet Pipe - " & INLET SIZE & " Inch:1"
strIinletFlangeBrowserName = "Top Inlet Flange - " & INLET SIZE & " Inch:1"

' This matrix represents the orientation required for the pipe on top of the tank
matrixM = ThisDoc.Geometry.Matrix (1, 0, 0, 0, 0, 0, -1, TANK OD / 2+ 6, 0, 1, 0, TANK L / 2 - INLET OFF, 0, 0, 0, 1)

appearance

Nothing)

Nothing)



KETIV

Manufacturing Innovation. Together.
' The locating matrix will be different for open, capped and valve end connection choices
If INLET FL END = "Open" Then
' If the user chooses a welding neck flange, a different offset matrix value will be required for the Y (up) direction
If INLET FL TYPE = "Welding Neck" Then
0, 1, TANK L / 2 - INLET OFF, O, 0, 0, 1)

matrixN = ThisDoc.Geometry.Matrix (0, 1, 0, 0, -1, 0, 0, TANK OD / 2 + dblFlangeOffsetDistance + 9 in, O,

Else
matrixN = ThisDoc.Geometry.Matrix (0, 1, 0, 0, -1, 0, 0, TANK OD / 2 + dblFlangeOffsetDistance + 6 in, 0, O, 1, TANK L / 2 - INLET OFF, O, O, O, 1)
End If
ElseIf INLET FL END = "Capped" Then

matrixN = ThisDoc.Geometry.Matrix(1, 0, 0, 0, O, 0, 1, TANK OD / 2 + 6, 0, -1, O, TANK L / 2 - INLET OFF, 0, O, O, 1)

Else
matrixN = ThisDoc.Geometry.Matrix(1, 0, 0, 0, O, O, 1, TANK OD / 2 + dblFlangeOffsetDistance + 7 in, 0, -1, 0, TANK L / 2 - INLET OFF, O, 0, O, 1)
End If
' If the user wants to place the inlet nozzle on the front, this is the code that will be used to create the location matrices
Else
' These strings will be used to set the occurrence names in the browser to indicate they are installed on top of the tank
strIinletPipeBrowserName = "Front Inlet Pipe - " & INLET SIZE & " Inch:1"
strIinletFlangeBrowserName = "Front Inlet Flange" & INLET SIZE & " Inch:1"

Dim dblDishOffset As Double = TANK L / 2 + (INLET_OFF / (TANK_OD / 2)) * DISH DEPTH + 6
matrixM = ThisDoc.Geometry.Matrix(-1, 0, 0, 0, O, 1, 0, TANK OD / 2 - INLET OFF, 0, 0, -1, dblDishOffset + 4, 0, 0, 0, 1)
' Since we created a function (GetFrontOrRearMatrix) that figures out location matrices on the front and rear dish plates,
! we can take advantage of that and don't need to figure them out separately, like we had to for the top

matrixN = GetFrontOrRearMatrix(INLET_FL_TYPE, INLET FL END, INLET OFF, 10, INLET SIZE, "Front", "Top")

End If
' These are the iLogic commands to add the pipe and flange components to the assembly, and place them properly based on the matrices
Dim componentM = Components.Add(strInletPipeBrowserName, strInletTubeName, position := matrixM, grounded := True, visible := True, appearance := Nothing)
Dim componentN = Components.Add(strInletFlangeBrowserName, strFlangeFile, position := matrixN, grounded := True, visible := True, appearance := Nothing)
End Sub
Function GetFlangeFilename (strFlangeType As String, strFlangeEnd As String, dblSize As Double) As String
' This function determines the full path and filename of the end connection that is needed, based on the flange type,
! flange end connection, and size
Dim strFilename As String
' If the end connection is "Open", then we just return a flange part
If strFlangeEnd = "Open" Then
strFilename = LIBRARY PATH & "Flanges\ASME B16.5 Flange " & strFlangeType & " - Class 150 " & dblSize & ".ipt"
' If the end connection is "Capped", then we find which pre-created assembly includes the desired flange and cap
' The files in the library were setup with a consistent naming convention so that it was easy to derive the filenames
! based on this information
ElseIf strFlangeEnd = "Capped" Then
strFilename = LIBRARY PATH & "Flanges\" & strFlangeType & " to Blind - " & dblSize & ".iam"
' If the end connection is "Valve", then we find which pre-created assembly includes the desired flange and butterfly valve
' The files in the library were setup with a consistent naming convention so that it was easy to derive the filenames
! based on this information
Else
strFilename = LIBRARY PATH & "Valves\Butterfly\" & dblSize & " Inch\" & strFlangeType & " to Threaded Valve - " & dblSize & ".iam"
End If

' Set our resulting filename string to the GetFlangeFilename function so that it can be returned to our calling statement

GetFlangeFilename = strFilename
End Function

dblVertOffset As Double, dblCustomHorOffset As Double,

strFlangeEnd As String, _
strSide As String, strTopOrBottom As String) As DocumentUnitsMatrix

dblFlangeSize As Double,

' This function returns a matrix object that is derived based on all of its inputs
' It is only good for matrices on the front dish head plate, and the rear dish head plate, and only for end connections

Function GetFrontOrRearMatrix (strFlangeType As String,



KETIV

Manufacturing Innovation. Together.
' That includes flanges, caps and valves
Dim matrixReturn As DocumentUnitsMatrix
' This variable calculates the length from the center of the tank to the outside edge of the tank body
' It then approximates the dish head plate depth using a linear formula (which isn't always the most accurate)
' The goal is to get the distance as from tank centerline to the outside edge of the tank, including the dish head plate
Dim dblDishOffset As Double = TANK L / 2 + (dblVertOffset / (TANK OD / 2)) * DISH DEPTH
' This uses the "GetFlangeOffsetDistance" function to get the initial offset values based on the type of end connection
Dim dblFlangeOffset As Double = GetFlangeOffsetDistance(strFlangeType, strFlangeEkEnd, dblFlangeSize)
Dim dblYValue, dblZValue As Double
' We need to know if the end connection will be on the upper half of the tank, or the lower half of the tank
' If it's on the upper half, our Y location value will be positive
' If it's on the lower half, our Y location value will be negative
If strTopOrBottom = "Top" Then
dblYValue = TANK OD / 2 - dblVertOffset
Else
dblYValue = -TANK OD / 2 + dblVertOffset
End If
' For "Open" end connections, calculate our Z location value, and create one matrix for the front, and one for the rear
' The reason front and rear placement matrices differ, is that a flange has to be rotated 180-degrees if it's placed
! on the rear dish head; in other words, you always want the flanges pointing away from the tanks

If strFlangeEnd = "Open" Then
dblZValue = dblDishOffset + dblFlangeOffset + dblCustomHorOffset - 6 in
If strSide = "Front" Then
matrixReturn = ThisDoc.Geometry.Matrix (0, 0, 1, 0, 0, 1, 0, dblYvValue, -1, 0, 0, dblZvValue, 0, 0, 0, 1)
Else
matrixReturn = ThisDoc.Geometry.Matrix (0, 0, -1, 0, 0, 1, 0, dblYValue, 1, 0, 0, -dblzZvalue, 0, 0, 0, 1)
End If
' For "Capped" end connections, calculate our Z location value, and create one matrix for the front, and one for the rear
ElseIf strFlangeEnd = "Capped" Then
dblZValue = dblDishOffset + dblCustomHorOffset
If strSide = "Front" Then
matrixReturn = ThisDoc.Geometry.Matrix (1, 0, 0, 0, 0, 1, 0, dblYValue, 0, 0, 1, dblzZVvalue, 0, 0, 0, 1)
Else
matrixReturn = ThisDoc.Geometry.Matrix (-1, 0, 0, 0, 0, 1, 0, dblyvalue, 0, 0, -1, -dblzvalue, 0, 0, 0, 1)
End If
' For "Valve" end connections, calculate our Z location value, and create one matrix for the front, and one for the rear
Else
dblZValue = dblDishOffset + dblCustomHorOffset + 1 in
If strSide = "Front" Then
matrixReturn = ThisDoc.Geometry.Matrix (1, 0, 0, 0, 0, 1, 0, dblYvalue, 0, 0, 1, dblzvalue, 0, 0, 0, 1)
Else
matrixReturn = ThisDoc.Geometry.Matrix (-1, 0, 0, 0, 0, 1, 0, dblYVvalue, 0, 0, -1, -dblZvalue, 0, 0, 0, 1)
End If
End If

' Set our resulting matrix to the GetFrontOrRearMatrix function so that it can be returned to our calling statement
GetFrontOrRearMatrix = matrixReturn
End Function

Function GetFlangeOffsetDistance(strFlangeType As String, strFlangeEnd As String, dblFlangeSize As Double) As Double
' This function determines what the initial flange offset distance should be for any end connection based on its
! flange type, flange end connection, and size
' It's pretty straight forward and just assigns empirically derived offset values based on the type of end connection
Dim dblFlangeOffsetDistance As Double
If strFlangeType = "Welding Neck" Then
If dblFlangeSize = 3 in Then dblFlangeOffsetDistance = 8.5 in
If dblFlangeSize = 4 in Then dblFlangeOffsetDistance = 9 in
If dblFlangeSize 6 in Then dblFlangeOffsetDistance = 9.5 in



KETIV

Manufacturing Innovation. Together.
If dblFlangeSize = 8 in Then dblFlangeOffsetDistance = 10 in

Else
If dblFlangeSize = 3 in Then dblFlangeOffsetDistance = 6.25 in
If dblFlangeSize = 4 in Then dblFlangeOffsetDistance = 6.31 in
If dblFlangeSize = 6 in Then dblFlangeOffsetDistance = 6.56 in
If dblFlangeSize = 8 in Then dblFlangeOffsetDistance = 6.5 in
End If
If strFlangeEnd = "Valve" Then dblFlangeOffsetDistance = dblFlangeOffsetDistance + 1 in

GetFlangeOffsetDistance = dblFlangeOffsetDistance
End Function



