

Sub Main

 ' First we need to get important design information from an Excel spreadsheet

 ' This information let's us know how many shell plates (and their sizes) we need based on the length of the tank

 GetParametersFromExcel

 ' Before creating a new assembly, we need to make sure the inlet does not interfere with a hatch or tank seam on the top of the tank

 ' This is only applicable for tanks that have the inlet located on the top side of the tank body

 ' This will give an example of how to check inputs before committing to generating geometry

 If ValidateSeamsAndHatches = False Then Exit Sub

 ' Setup project folders, including sub-folders for sub-assemblies

 ' Then create a new copy of the this file, and rename it based on the PROJECT_ID

 If SetupProjectAndTopAssembly = False Then Exit Sub

 ' Create a new copy of the tank body assembly based on an existing tank body assembly template

 ' Then add it to the assembly at the origin and update all the parts based on user inputs

 CreateAndConfigureTankBody

 ' Create a new copy of the skid assembly based on an existing skid assembly template

 ' Then add it to the assembly at the origin and update all the parts based on user inputs and calculations

 CreateAndConfigureSkid

 ' Create a new copy of the gunline assembly based on an existing gunline assembly template

 ' Then add it to the assembly at the origin and update all the parts based on user inputs and calculations

 ' Note that gunline assemblies can only be used on tanks with an OD of 60" or greater

 If GUNLINE = True And TANK_OD >= 60 in Then CreateAndConfigureGunline

 ' Place the selected manway into the assembly, on the rear dish plate

 ' Note that manway assemblies can only be used on tanks with an OD of 48" or greater

 If MANWAY = True And TANK_OD >= 48 in Then InsertManwayIntoAssembly

 ' Place the hatch into the assembly on top of the tank body assembly

 ' User may have none, 1 or 2 total hatches in the assembly

 ' User may select hatches in the front or in the back, or both

 ' Note that hatch assemblies can only be used on tanks with an OD of 60" or greater

 InsertHatchesIntoAssembly

 ' Place the drain nozzles in the assembly

 ' Drain nozzles are always located near the bottom of the dish plates on each end

 ' User may select whether or not they want drains in the front and back, and what end connections to use

 ' Notes that if the tank diameter is 48" or below, 3" drains will be used; otherwise 4" drains will be used

 InsertDrainNozzlesIntoAssembly

 ' Place the Sump Nozzle

 If SUMP = True And TANK_OD >= 60 in Then CreateAndConfigureSump

 ' Place the Inlet Nozzle as required

 InsertInletIntoAssembly

End Sub

Sub CopyComponents(strFilePath As String, strAssemblyName As String, strFolderName As String)

 ' This function copies an assembly and all of its components to a new location

 ' It also updates the references in the new assembly so they point to the new components created

 ' If there are files in the assembly you do not want new copies of, then this routine will not work for you

 ' This uses the Inventor API to make a variable that references the assembly name passed to this routine

 ' It opens it up in the Inventor interface to see what is happening to the file

 Dim oAsmDoc As AssemblyDocument

 oAsmDoc = ThisApplication.Documents.Open(strFilePath & strAssemblyName, True)

 ' This is like selecting "Save As" in the Inventor interface, and saves a new copy of the assembly that was passed in

 oAsmDoc.SaveAs(PROJECT_PATH & PROJECT_ID & "\" & strFolderName & "\" & Left(strAssemblyName, strAssemblyName.Length - 4) & " - " & PROJECT_ID & ".iam", False)

 ' This continues to use the more advanced API routines available with Inventor

 ' A DocumentsEnumerator object will let us access the names of all the files referenced inside of the assembly

 Dim oRefDocs As DocumentsEnumerator

 oRefDocs = oAsmDoc.AllReferencedDocuments

 ' A document object represents a specific file reference in the Inventor assembly

 Dim oRefDoc As Document

 ' We will iterate through all of the currently referenced documents, and make copies of them

 For Each oRefDoc In oRefDocs

 Dim strNewFileName As String

 Dim strOldFileName As String

 strOldFileName = strFilePath & oRefDoc.DisplayName

 strNewFileName = PROJECT_PATH & PROJECT_ID & "\" & strFolderName & "\" & Left(oRefDoc.DisplayName, oRefDoc.DisplayName.Length - 4) & " - " & PROJECT_ID & ".ipt"

 ' Here is where a new copy of the referenced files are made, with a new name based on PROJECT_PATH and PROJECT_ID

 oRefDoc.SaveAs(strNewFileName, True)

 ' This code is like the "Replace Components" command inside of Inventor

 ' It replaces the reference to the old part, with a reference to the new part we recently created

 oAsmDoc.File.ReferencedFileDescriptors.Item(strOldFileName).ReplaceReference(strNewFileName)

 ' Next repeats this same process for all the files in our assembly, until we get to the end of the list

 Next

End Sub

Sub GetParametersFromExcel()

 ' This information is found on the "Shell Length Calcs" tab of the spreadsheet, and the first column represents the length of the tank

 ' Each tank body can have up to two different shell plate widths to cover the exact length of the tank

 ' SP1 represents the width of the first shell plate, and SP2 represents the width of the second shell plate

 ' Length Check and Total Plates columns are just for verification of the data, and are not read into this rule

 i = GoExcel.FindRow("C:\Automation Starter Kit\SK Excel File.xlsx", "Shell Length Calcs", "Length", "=", TANK_L)

 SHELL_W_1 = GoExcel.CurrentRowValue("SP1 Width")

 SHELL_W_2 = GoExcel.CurrentRowValue("SP2 Width")

 SHELL_Q_1 = GoExcel.CurrentRowValue("SP1 Qty")

 SHELL_Q_2 = GoExcel.CurrentRowValue("SP2 Qty")

 ' This information let's us know key parameters that are used to design the skid assembly

 ' This grabs several columns from the "Dish Depths" tab of the spreadsheet

 j = GoExcel.FindRow("C:\Automation Starter Kit\SK Excel File.xlsx", "Dish Depths", "Tank Diameter", "=", TANK_OD)

 DISH_DEPTH = GoExcel.CurrentRowValue("Dish Depth")

 SKID_FW = GoExcel.CurrentRowValue("Width")

 SKID_FH = GoExcel.CurrentRowValue("Height")

 SKID_FL_THK = GoExcel.CurrentRowValue("Flange")

 If TANK_OD >= 36 in Then SKID_WEB_THK = GoExcel.CurrentRowValue("Web")

 SKID_BEND_L = GoExcel.CurrentRowValue("Bend_L")

 SKID_ROD_D = GoExcel.CurrentRowValue("Rod_D")

 DRAIN_DISH_OFF = GoExcel.CurrentRowValue("Drain Offset Dish")

 ' This grabs information from the "Tubes" tab so that we can test if the input nozzle interferes with hatches or shell plate seams

 k = GoExcel.FindRow("C:\Automation Starter Kit\SK Excel File.xlsx", "Tubes", "Size", "=", Inlet_Size)

 INLET_PIPE_OD = GoExcel.CurrentRowValue("OD")

End Sub

Function ValidateSeamsAndHatches() As Boolean

 ' This function validates that the inlet location does not interfere with a hatch or tank seam

 ' If there's no interference, the value "True" is returned

 ' Otherwise, a messagebox let's the user know there was an error, and values will need to be re-entered

 Dim blnValid As Boolean = True

 If INLET_LOC = "Top" Then

 Dim dblFrontLoc, dblBackLoc As Double

 ' These two variables represent the two Z coordinates of the inlet pipe, including the front and back sides

 dblFrontLoc = INLET_OFF - INLET_PIPE_OD / 2

 dblBackLoc = INLET_OFF + INLET_PIPE_OD / 2

 ' This If statement does the math for the front hatch

 ' F_HATCH_OFF represents the offset value of the hatch from the front of the tank body (not including dish depths)

 ' SEAM_CLEAR_MIN represents the minimum clearance you want enforced to place inlets around seams

 ' 20 in represents how wide the actual hatch is; this will need to become a variable if more hatches are used in the future

 If F_HATCH Then

 If (dblFrontLoc > F_HATCH_OFF - SEAM_CLEAR_MIN And dblFrontLoc < F_HATCH_OFF + 20 in + SEAM_CLEAR_MIN) Or _

 (dblBackLoc > F_HATCH_OFF - SEAM_CLEAR_MIN And dblBackLoc < F_HATCH_OFF + 20 in + SEAM_CLEAR_MIN) Then

 MessageBox.Show("The tank inlet will need to be moved to avoid interference with the front hatch." & vbCrLf & _

 "Avoid an inlet offset between " & F_HATCH_OFF - INLET_PIPE_OD / 2 - SEAM_CLEAR_MIN & Chr(34) & " and " & _

 F_HATCH_OFF + 20 in + INLET_PIPE_OD / 2 + SEAM_CLEAR_MIN & Chr(34) & ".")

 blnValid = False

 ' Show the main form before finishing the test and returning a value of False

 iLogicForm.Show("Configure Tank")

 End If

 End If

 ' This If statement does the math for the rear hatch

 ' R_HATCH_OFF represents the offset value of the hatch from the rear of the tank body (not including dish depths)

 ' SEAM_CLEAR_MIN represents the minimum clearance you want enforced to place inlets around seams

 ' 20 in represents how wide the actual hatch is; this will need to become a variable if more hatches are used in the future

 If R_HATCH Then

 If (dblFrontLoc > TANK_L - R_HATCH_OFF - 20 in - SEAM_CLEAR_MIN And dblFrontLoc < TANK_L - R_HATCH_OFF + SEAM_CLEAR_MIN) Or _

 (dblBackLoc > TANK_L - R_HATCH_OFF - 20 in - SEAM_CLEAR_MIN And dblBackLoc < TANK_L - R_HATCH_OFF + SEAM_CLEAR_MIN) Then

 MessageBox.Show("The tank inlet will need to be moved to avoid interference with the rear hatch." & vbCrLf & _

 "Avoid an inlet offset between " & TANK_L - R_HATCH_OFF - 20 in - INLET_PIPE_OD / 2 - SEAM_CLEAR_MIN & Chr(34) & " and " & _

 TANK_L - R_HATCH_OFF + INLET_PIPE_OD / 2 + SEAM_CLEAR_MIN & Chr(34) & ".")

 blnValid = False

 ' Show the main form before finishing the test and returning a value of False

 iLogicForm.Show("Configure Tank")

 End If

 End If

 ' This If statement does the math for the seam clearance calculations

 ' TANK_L represents the length of the tank (not including dish depths)

 ' SHELL_Q_1 and SHELL_Q_2 represent how many plates of width 1 and width 2 are required to create the tank body

 ' SHELL_W_1 and SHELL_W_2 represent the widths of the shell plates used to create the tank shell body

 If TANK_L > 72 in Then

 Dim dblSeamLocation As Double

 ' The For statement will take us from one seam of the tank to the next, until we pass where the inlet is located

 For seam = 1 To SHELL_Q_1 + SHELL_Q_2 - 1

 If seam <= SHELL_Q_1 Then

 dblSeamLocation = SHELL_W_1 * seam

 Else

 dblSeamLocation = SHELL_Q_1 * SHELL_W_1 + (seam - SHELL_Q_1) * SHELL_W_2

 End If

 ' This statement will show you how to create a compound If statement using "And" and "Or" operators

 If (dblFrontLoc > dblSeamLocation - SEAM_CLEAR_MIN And dblFrontLoc < dblSeamLocation + SEAM_CLEAR_MIN) Or _

 (dblBackLoc > dblSeamLocation - SEAM_CLEAR_MIN And dblBackLoc < dblSeamLocation + SEAM_CLEAR_MIN) Or _

 (INLET_OFF > dblSeamLocation - SEAM_CLEAR_MIN And INLET_OFF < dblSeamLocation + SEAM_CLEAR_MIN) Then

 MessageBox.Show("The tank inlet will need to be moved to avoid interference with one of the seams." & vbCrLf & _

 "Avoid an inlet offset between " & dblSeamLocation - INLET_PIPE_OD / 2 - SEAM_CLEAR_MIN & Chr(34) & " and " & _

 dblSeamLocation + INLET_PIPE_OD / 2 + SEAM_CLEAR_MIN & Chr(34) & ".")

 blnValid = False

 ' Show the main form before finishing the test and returning a value of False

 iLogicForm.Show("Configure Tank")

 End If

 Next

 End If

 End If

 ValidateSeamsAndHatches = blnValid

End Function

Function SetupProjectAndTopAssembly() As Boolean

 ' This function checks to make sure a project doesn't already exist that the user is requesting

 ' It then sets up a folder structure, and does a "Save As" to create a new top-level assembly that will be used

 ' This first set of statements uses the Windows System object to create a folder structure for our files

 Dim blnSetupSucceeded As Boolean = True

 ' This statement first checks to see if the folder already exists

 ' If it does already exist, it won't bother creating the folder again

 If System.IO.Directory.Exists(PROJECT_PATH & PROJECT_ID) = False Then

 System.IO.Directory.CreateDirectory(PROJECT_PATH & PROJECT_ID)

 System.IO.Directory.CreateDirectory(PROJECT_PATH & PROJECT_ID & "\Tank Body Assy")

 System.IO.Directory.CreateDirectory(PROJECT_PATH & PROJECT_ID & "\Skid Assy")

 ' If user has configured a gunline, then create a folder to store its files

 If GUNLINE Then System.IO.Directory.CreateDirectory(PROJECT_PATH & PROJECT_ID & "\Gunline Assy")

 ' If a user have configured a sump, then create a folder to store its files

 If SUMP Then System.IO.Directory.CreateDirectory(PROJECT_PATH & PROJECT_ID & "\Sump Assy")

 End If

 ' Now that we have our folder structure in place, we are ready to save the Master Assembly file

 ' It uses the path stored in the PROJECT_PATH parameter, and the PROJECT_ID to give the assembly a unique name

 Dim sMasterAssy As String

 sMasterAssy = PROJECT_PATH & PROJECT_ID & "\Tank Assembly - " & PROJECT_ID & ".iam"

 ' We first check to make sure the master assembly file doesn't already exist, then save it if it doesn't

 If System.IO.File.Exists(sMasterAssy) = False Then

 ThisDoc.Document.SaveAs(sMasterAssy , False)

 Else

 MessageBox.Show("Assembly Already Exists", "Master")

 iLogicForm.Show("Configure Tank")

 blnSetupSucceeded = False

 End If

 ' Return whether or not we were successful creating the new folder structure and master assembly file

 SetupProjectAndTopAssembly = blnSetupSucceeded

End Function

Sub CreateAndConfigureTankBody()

 ' This code creates a new copy of the tank body assembly template in our new folder structure

 ' It then updates the tank body geometry based on values we pass to the assembly

 Dim strNewTankBodyFileName As String

 ' This string represents the new name of our unique, copied tank body assembly file

 strNewTankBodyFileName = PROJECT_PATH & PROJECT_ID & "\Tank Body Assy\Tank Body Assy - " & PROJECT_ID & ".iam"

 ' We first check to make sure the tank body assembly file has not been previously created

 If System.IO.File.Exists(strNewTankBodyFileName) = False Then

 ' This here is a sample of how to make a variable that represents an assembly document

 ' It uses the Inventor API, which you can use freely (for the most part) throughout iLogic rules

 Dim subAssy1 As AssemblyDocument

 ' This statement tells subAssy1 to represent the template file, and opens it up in the Inventor interface

 subAssy1 = ThisApplication.Documents.Open(TEMPLATE_PATH & "Tank Body Assy\Tank Body Assy.iam", True)

 ' This code is like selecting "File Save As" in the Inventor interface, and we now have our new file saved

 subAssy1.SaveAs(strNewTankBodyFileName, False)

 ' This can be taken from an iLogic snippet, and is used to insert components into assemblies

 ' This code inserts our newly created tank body assembly into our master tank assembly file

 Dim componentA = Components.Add("Tank Body Assy:1", strNewTankBodyFileName, position := Nothing, grounded := True, visible := True, appearance := Nothing)

 ' This will now close the new tank body assembly file

 subAssy1.Close

 ' This code calculates the horizontal and vertical locations of our gunline assembly (for later use)

 GUNLINE_HOR_OFF = Round((TANK_OD / 2) * .6667)

 GUNLINE_VERT_OFF = Round((TANK_OD / 2) * .25)

 ' This code represents our typical manway offset, which is 26" above the bottom of the tank

 MANWAY_VERT_OFF = -TANK_OD / 2 + 26

 ' These statements pass parameters from our master assembly file into the tank body assembly file

 Parameter("Tank Body Assy:1", "PROJECT_ID") = PROJECT_ID

 Parameter("Tank Body Assy:1", "PROJECT_PATH") = PROJECT_PATH

 Parameter("Tank Body Assy:1", "TANK_OD") = TANK_OD

 Parameter("Tank Body Assy:1", "TANK_L") = TANK_L

 Parameter("Tank Body Assy:1", "SHELL_W_1") = SHELL_W_1

 Parameter("Tank Body Assy:1", "SHELL_W_2") = SHELL_W_2

 Parameter("Tank Body Assy:1", "SHELL_Q_1") = SHELL_Q_1

 Parameter("Tank Body Assy:1", "SHELL_Q_2") = SHELL_Q_2

 Parameter("Tank Body Assy:1", "GUNLINE_SIZE") = GUNLINE_SIZE

 Parameter("Tank Body Assy:1", "GUNLINE_VERT_OFF") = GUNLINE_VERT_OFF

 Parameter("Tank Body Assy:1", "GUNLINE_HOR_OFF") = GUNLINE_HOR_OFF

 Parameter("Tank Body Assy:1", "MANWAY_VERT_OFF") = MANWAY_VERT_OFF

 Parameter("Tank Body Assy:1", "GUNLINE") = GUNLINE

 Parameter("Tank Body Assy:1", "MANWAY") = MANWAY

 Parameter("Tank Body Assy:1", "F_HATCH") = F_HATCH

 Parameter("Tank Body Assy:1", "F_HATCH_OFF") = F_HATCH_OFF

 Parameter("Tank Body Assy:1", "R_HATCH") = R_HATCH

 Parameter("Tank Body Assy:1", "R_HATCH_OFF") = R_HATCH_OFF

 Parameter("Tank Body Assy:1", "INLET_OFF") = INLET_OFF

 Parameter("Tank Body Assy:1", "INLET_PIPE_OD") = INLET_PIPE_OD

 ' Once all the parameters are updated in the tank body assembly file, we want to run their rules

 ' This will allow the tank body assembly to update all its own parts and components itself

 iLogicVb.RunRule("Tank Body Assy:1", "Size Dish")

 iLogicVb.RunRule("Tank Body Assy:1", "Calculate and Place Shells")

 End If

End Sub

Sub CreateAndConfigureSkid()

 ' This code creates a new copy of the skid assembly template in our new folder structure

 ' It then updates the skid geometry based on values we pass to the assembly

 Dim strNewSkidFilename As String

 ' This string represents the new name of our unique, copied skid assembly file

 strNewSkidFilename = PROJECT_PATH & PROJECT_ID & "\Skid Assy\Skid Assy - " & PROJECT_ID & ".iam"

 ' We first check to make sure the skid assembly file has not been previously created

 If System.IO.File.Exists(strNewSkidFilename) = False Then

 ' This here is a sample of how to make a variable that represents an assembly document

 ' It uses the Inventor API, which you can use freely (for the most part) throughout iLogic rules

 Dim subAssy1 As AssemblyDocument

 ' This code uses the "CopyComponents" subroutine (see above) to copy the skid assembly, and all its children

 ' This will not work if you don't want some of the parts in the assembly to have unique copies

 ' The function also changes the references in the skid assembly to point to the newly created part files

 CopyComponents(TEMPLATE_PATH & "Skid Assy\", "Skid Assy.iam", "Skid Assy")

 ' This statement tells subAssy1 to represent the template file, and opens it up in the Inventor interface

 subAssy1 = ThisApplication.Documents.Open(strNewSkidFilename, True)

 ' This statement changes the occurrence names of the existing skid components in the model browser

 ' This will allow the rule that passes parameters in our skid sub-assembly to still work

 subAssy1.ComponentDefinition.Occurrences(1).Name = "Skid-1:1"

 subAssy1.ComponentDefinition.Occurrences(2).Name = "Skid-1:2"

 subAssy1.Save

 subAssy1.Close

 ' This can be taken from an iLogic snippet, and is used to insert components into assemblies

 ' This code inserts our newly created skid assembly into our master tank assembly file

 Dim componentB = Components.Add("Skid Assy:1", strNewSkidFilename, position := Nothing, grounded := True, visible := True, appearance := Nothing)

 ' Change our flange radius if the TANK_OD is 30" or less

 If TANK_OD <= 30 in Then SKID_FLG_RAD = .1 in

 ' These statements pass parameters from our master assembly file into the skid assembly file

 Parameter("Skid Assy:1", "PROJECT_ID") = PROJECT_ID

 Parameter("Skid Assy:1", "PROJECT_PATH") = PROJECT_PATH

 Parameter("Skid Assy:1", "TANK_OD") = TANK_OD

 Parameter("Skid Assy:1", "TANK_L") = TANK_L

 Parameter("Skid Assy:1", "SHELL_W_1") = SHELL_W_1

 Parameter("Skid Assy:1", "SHELL_W_2") = SHELL_W_2

 Parameter("Skid Assy:1", "SHELL_Q_1") = SHELL_Q_1

 Parameter("Skid Assy:1", "SHELL_Q_2") = SHELL_Q_2

 Parameter("Skid Assy:1", "SKID_FW") = SKID_FW

 Parameter("Skid Assy:1", "SKID_FH") = SKID_FH

 Parameter("Skid Assy:1", "SKID_FL_THK") = SKID_FL_THK

 Parameter("Skid Assy:1", "SKID_FLG_RAD") = SKID_FLG_RAD

 Parameter("Skid Assy:1", "SKID_WEB_THK") = SKID_WEB_THK

 Parameter("Skid Assy:1", "SKID_BEND_L") = SKID_BEND_L

 Parameter("Skid Assy:1", "SKID_ROD_D") = SKID_ROD_D

 Parameter("Skid Assy:1", "DISH_DEPTH") = DISH_DEPTH

 ' Once all the parameters are updated in the skid assembly file, we want to run its creation rule

 ' This will allow the skid assembly to update all its own parts and components itself

 iLogicVb.RunRule("Skid Assy:1", "Create Skid")

 End If

End Sub

Sub CreateAndConfigureGunline()

 ' This code creates a new copy of the gunline assembly template in our new folder structure

 ' It then updates the gunline geometry based on values we pass to the assembly

 Dim strNewGunlineFilename As String

 ' This string represents the new name of our unique, copied gunline assembly file

 strNewGunlineFilename = PROJECT_PATH & PROJECT_ID & "\Gunline Assy\Gunline Assy - " & PROJECT_ID & ".iam"

 ' We first check to make sure the gunline assembly file has not been previously created

 ' If it hasn't yet been created, we do a Windows Copy operation to make a new copy in our new folder

 If System.IO.File.Exists(strNewGunlineFilename) = False Then

 System.IO.File.Copy(TEMPLATE_PATH & "Gunline Assy\Gunline Assy.iam", strNewGunlineFilename)

 End If

 ' In order to locate where to put the gunline assembly in our master assembly file, we will use matrix positioning

 ' See presentation included in this kit that explains how matrix positioning works - it's easier than it looks or sounds

 Dim matrixC = ThisDoc.Geometry.Matrix(-1, 0, 0, GUNLINE_HOR_OFF, 0, 1, 0, -GUNLINE_VERT_OFF, 0, 0, -1, TANK_L / 2 + DISH_DEPTH, 0, 0, 0, 1)

 ' This can be taken from an iLogic snippet, and is used to insert components into assemblies

 ' This code inserts our newly created gunline assembly into our master tank assembly file

 ' Instead of placing at the origin, it places it based on our input matrix we created (matrixC)

 ' Note that we are grounding all geometry, and we are not using any constraints to place the assembly

 Dim componentC = Components.Add("Gunline Assy:1", strNewGunlineFilename, position := matrixC, grounded := True, visible := True, appearance := Nothing)

 ' These statements pass parameters from our master assembly file into the gunline assembly file

 Parameter("Gunline Assy:1", "TANK_OD") = TANK_OD

 Parameter("Gunline Assy:1", "TANK_L") = TANK_L

 Parameter("Gunline Assy:1", "PROJECT_ID") = PROJECT_ID

 Parameter("Gunline Assy:1", "PROJECT_PATH") = PROJECT_PATH

 Parameter("Gunline Assy:1", "SHELL_Q_1") = SHELL_Q_1

 Parameter("Gunline Assy:1", "SHELL_Q_2") = SHELL_Q_2

 Parameter("Gunline Assy:1", "GUNLINE_SIZE") = GUNLINE_SIZE

 Parameter("Gunline Assy:1", "GUNLINE_F_FL_TYPE") = GUNLINE_F_FL_TYPE

 Parameter("Gunline Assy:1", "GUNLINE_R_FL_TYPE") = GUNLINE_R_FL_TYPE

 Parameter("Gunline Assy:1", "GUNLINE_F_FL_END") = GUNLINE_F_FL_END

 Parameter("Gunline Assy:1", "GUNLINE_R_FL_END") = GUNLINE_R_FL_END

 Parameter("Gunline Assy:1", "DISH_DEPTH") = DISH_DEPTH

 ' Once all the parameters are updated in the gunline assembly file, we want to run its creation rule

 ' This will allow the gunline assembly to update all its own parts and components itself

 iLogicVb.RunRule("Gunline Assy:1", "Set Gunline Size")

 iLogicVb.RunRule("Gunline Assy:1", "Calculate Gunline Spacing")

 iLogicVb.RunRule("Gunline Assy:1", "Push Parameters")

 iLogicVb.RunRule("Gunline Assy:1", "Spray Nozzle Length")

 iLogicVb.RunRule("Gunline Assy:1", "Assemble Flanges")

End Sub

Sub InsertManwayIntoAssembly()

 ' This code places the selected manway into our assembly, if applicable

 ' Manways are always place on the rear dish head plate

 ' We first need to calculate the Z-value to place our manway so it doesn't interfere with the dish head plate

 Dim dblHorizontalOffset As Double

 ' This calculates our initial horizontal offset based on the length of the tank, and placement on the dish head plate

 If MANWAY_VERT_OFF < 0 Then

 dblHorizontalOffset = -(TANK_L / 2 - (MANWAY_VERT_OFF / (TANK_OD / 2)) * DISH_DEPTH + MANWAY_HOR_OFF)

 Else

 dblHorizontalOffset = -(TANK_L / 2 + (MANWAY_VERT_OFF / (TANK_OD / 2)) * DISH_DEPTH + MANWAY_HOR_OFF)

 End If

 ' Even though we made an initial calculation for horizontal placement, there was some interference with the dish head plate

 ' With more time, I could have come up with a better calculation than the one above that would have been more accurate

 ' For the sake of timing and getting this done, I added different offset values based on empirical testing

 ' First, we start with the code to place a 21 inch manway, if that has been selected

 If MANWAY_SIZE = 21 in Then

 If TANK_OD >= 54 in And TANK_OD <= 90 in Then dblHorizontalOffset -= 6 in

 If TANK_OD >= 96 in And TANK_OD <= 102 in Then dblHorizontalOffset -= 4 in

 If TANK_OD >= 108 in And TANK_OD <= 114 in Then dblHorizontalOffset -= 2.5 in

 If TANK_OD = 120 Then dblHorizontalOffset -= 1 in

 If TANK_OD = 138 Then dblHorizontalOffset += 1 in

 If TANK_OD = 144 Then dblHorizontalOffset += 2 in

 ' In order to locate where to put the manway assembly in our master assembly file, we will use matrix positioning

 ' See presentation included in this kit that explains how matrix positioning works - it's easier than it looks or sounds

 Dim matrixD = ThisDoc.Geometry.Matrix(-1, 0, 0, 0, 0, 1, 0, MANWAY_VERT_OFF, 0, 0, -1, dblHorizontalOffset, 0, 0, 0, 1)

 ' This can be taken from an iLogic snippet, and is used to insert components into assemblies

 ' This code inserts the selected manway assembly into our master tank assembly file

 ' Instead of placing at the origin, it places it based on our input matrix we created (matrixD)

 ' Note that we are grounding all geometry, and we are not using any constraints to place the manway

 Dim componentD = Components.Add("Manway 21 Inch:1", LIBRARY_PATH & "Manways\21 Inch\21 in Manway.iam", _

 position := matrixD, grounded := True, visible := True, appearance := Nothing)

 ' Next is the code to place the 22 inch manway, if that has been selected

 ElseIf MANWAY_SIZE = 22 in Then

 If TANK_OD >= 54 in And TANK_OD <= 60 in Then dblHorizontalOffset -= 3 in

 If TANK_OD >= 66 in And TANK_OD <= 78 in Then dblHorizontalOffset -= 4 in

 If TANK_OD >= 84 in And TANK_OD <= 90 in Then dblHorizontalOffset -= 2 in

 If TANK_OD >= 96 in And TANK_OD <= 102 in Then dblHorizontalOffset -= 1 in

 If TANK_OD >= 132 in And TANK_OD <= 138 in Then dblHorizontalOffset += 2 in

 If TANK_OD = 144 Then dblHorizontalOffset += 3 in

 ' In order to locate where to put the manway assembly in our master assembly file, we will use matrix positioning

 ' See presentation included in this kit that explains how matrix positioning works - it's easier than it looks or sounds

 Dim matrixE = ThisDoc.Geometry.Matrix(0, 0, 1, 0, -1, 0, 0, MANWAY_VERT_OFF, 0, -1, 0, dblHorizontalOffset, 0, 0, 0, 1)

 ' This can be taken from an iLogic snippet, and is used to insert components into assemblies

 ' This code inserts the selected manway assembly into our master tank assembly file

 ' Instead of placing at the origin, it places it based on our input matrix we created (matrixE)

 ' Note that we are grounding all geometry, and we are not using any constraints to place the manway

 Dim componentE = Components.Add("Manway 22 Inch:1", LIBRARY_PATH & "Manways\22 Inch\22 in Manway.iam", _

 position := matrixE, grounded := True, visible := True, appearance := Nothing)

 Else

 If TANK_OD >= 114 in And TANK_OD <= 126 in Then dblHorizontalOffset += 2 in

 If TANK_OD >= 132 in And TANK_OD <= 138 in Then dblHorizontalOffset += 3 in

 If TANK_OD = 144 in Then dblHorizontalOffset += 4.5 in

 ' In order to locate where to put the manway assembly in our master assembly file, we will use matrix positioning

 ' See presentation included in this kit that explains how matrix positioning works - it's easier than it looks or sounds

 Dim matrixF = ThisDoc.Geometry.Matrix(0, 0, 1, 0, -1, 0, 0, MANWAY_VERT_OFF, 0, -1, 0, dblHorizontalOffset, 0, 0, 0, 1)

 ' This can be taken from an iLogic snippet, and is used to insert components into assemblies

 ' This code inserts the selected manway assembly into our master tank assembly file

 ' Instead of placing at the origin, it places it based on our input matrix we created (matrixF)

 ' Note that we are grounding all geometry, and we are not using any constraints to place the manway

 Dim componentF = Components.Add("Manway 25 Inch:1", LIBRARY_PATH & "Manways\25 Inch\25 in Manway.iam", _

 position := matrixF, grounded := True, visible := True, appearance := Nothing)

 End If

End Sub

Sub InsertHatchesIntoAssembly()

 ' This code places the hatch into our assembly (up to two times), if applicable

 ' Hatches are always place on the top of the tank body assembly, at either end of the tank

 ' This set of commands is to place the front hatch, if the user has opted to include one

 If F_HATCH Then

 ' In order to locate where to put the hatch assembly in our master assembly file, we will use matrix positioning

 ' See presentation included in this kit that explains how matrix positioning works - it's easier than it looks or sounds

 Dim matrixG = ThisDoc.Geometry.Matrix(1, 0, 0, 10.625, 0, 1, 0, TANK_OD / 2 + 3, 0, 0, 1, TANK_L / 2 - F_HATCH_OFF - 21.5, 0, 0, 0, 1)

 ' This can be taken from an iLogic snippet, and is used to insert components into assemblies

 ' This code inserts the hatch assembly into our master tank assembly file

 ' Instead of placing at the origin, it places it based on our input matrix we created (matrixG)

 ' Note that we are grounding all geometry, and we are not using any constraints to place the hatch

 Dim componentG = Components.Add("Front Hatch:1", LIBRARY_PATH & "Hatches\20 Inch\MW-SW 103.iam", _

 position := matrixG, grounded := True, visible := True, appearance := Nothing)

 End If

 If R_HATCH Then

 ' In order to locate where to put the hatch assembly in our master assembly file, we will use matrix positioning

 ' See presentation included in this kit that explains how matrix positioning works - it's easier than it looks or sounds

 Dim matrixH = ThisDoc.Geometry.Matrix(-1, 0, 0, -10.625, 0, 1, 0, TANK_OD / 2 + 3, 0, 0, -1, -TANK_L / 2 + R_HATCH_OFF + 21.5, 0, 0, 0, 1)

 ' This can be taken from an iLogic snippet, and is used to insert components into assemblies

 ' This code inserts the selected manway assembly into our master tank assembly file

 ' Instead of placing at the origin, it places it based on our input matrix we created (matrixH)

 ' Note that we are grounding all geometry, and we are not using any constraints to place the manway

 Dim componentH = Components.Add("Rear Hatch:1", LIBRARY_PATH & "Hatches\20 Inch\MW-SW 103.iam", _

 position := matrixH, grounded := True, visible := True, appearance := Nothing)

 End If

End Sub

Sub InsertDrainNozzlesIntoAssembly()

 ' This code places the drain nozzles into our assembly, if applicable

 ' Each drain nozzle consists of a pipe, and an end connection (i.e. flange, capped flange, or valve)

 ' One drain nozzle can be placed on the front head dish plate, and another can be placed on the rear head dish plate

 ' First, we set the size of the drain nozzles based on the OD of the tank

 If TANK_OD <= 48 in Then

 DRAIN_SIZE = 3 in

 Else

 DRAIN_SIZE = 4 in

 End If

 ' If they have selected to have a drain in front, then place it at the bottom of the tank on the front dish head plate

 Dim strDrainValveName, strDrainPipeName As String

 ' These strings represent the filenames (and paths) for the both the pipe and the end connection

 strDrainValveName = LIBRARY_PATH & "Valves\Butterfly\" & DRAIN_SIZE & " Inch\Slip-On Welding to Threaded Valve - " & DRAIN_SIZE & ".iam"

 strDrainPipeName = LIBRARY_PATH & "Flanges\ANSI B36.10 XS - " & DRAIN_SIZE & ".ipt"

 ' This variable will represent the offset in the front based on the end connection type

 Dim dblFrontHorOffset As Double

 If DRAIN_F_FL_END = "Valve" Then

 dblFrontHorOffset = 12

 Else

 dblFrontHorOffset = 9

 End If

 ' This variable will represent the offset in the rear based on the end connection type

 Dim dblRearHorOffset As Double

 If DRAIN_F_FL_END = "Valve" Then

 dblRearHorOffset = 12

 Else

 dblRearHorOffset = 9

 End If

 ' This code will determine if a front drain is required, and then run code to place it if it is

 If DRAIN_F Then

 ' This uses the "GetFlangeFilename" function (near the bottom of this rule)

 ' It will automatically determine the filename based on flange type, flange end connection, and drain size

 Dim strFrontDrainFlangeName = GetFlangeFilename(DRAIN_F_FL_TYPE, DRAIN_F_FL_END, DRAIN_SIZE)

 ' This uses the "GetFrontOrRearMatrix" function (near the bottom of this rule)

 ' This will automatically determine the location matrix based on several factors

 Dim matrixI = GetFrontOrRearMatrix(DRAIN_F_FL_TYPE, DRAIN_F_FL_END, DRAIN_SIZE, dblFrontHorOffset, DRAIN_SIZE, "Front", "Bottom")

 ' This can be taken from an iLogic snippet, and is used to insert components into assemblies

 ' This code inserts the selected end connection part or assembly into our master tank assembly file

 ' Instead of placing at the origin, it places it based on our input matrix we created (matrixI)

 ' Note that we are grounding all geometry, and we are not using any constraints to place the end connection

 Dim componentI = Components.Add("Front Drain:1", strFrontDrainFlangeName, position := matrixI, grounded := True, visible := True, appearance := Nothing)

 ' We create a location matrix and place the pipe, to complete the components needed for the front drain

 Dim matrixJ = ThisDoc.Geometry.Matrix(-1, 0, 0, 0, 0, 1, 0, -TANK_OD / 2 + DRAIN_SIZE, 0, 0, -1, TANK_L / 2 + (DRAIN_SIZE / (TANK_OD / 2)) * DISH_DEPTH + 9 in, 0,

0, 0, 1)

 Dim componentJ = Components.Add("Front Drain Pipe:1", strDrainPipeName, position := matrixJ, grounded := True, visible := True, appearance := Nothing)

 End If

 ' This code will determine if a rear drain is required, and then run code to place it if it is

 If DRAIN_R Then

 ' This uses the "GetFlangeFilename" function (near the bottom of this rule)

 ' It will automatically determine the filename based on flange type, flange end connection, and drain size

 Dim strRearDrainFlangeName = GetFlangeFilename(DRAIN_R_FL_TYPE, DRAIN_R_FL_END, DRAIN_SIZE)

 ' This uses the "GetFrontOrRearMatrix" function (near the bottom of this rule)

 ' This will automatically determine the location matrix based on several factors

 Dim matrixK = GetFrontOrRearMatrix(DRAIN_R_FL_TYPE, DRAIN_R_FL_END, DRAIN_SIZE, dblRearHorOffset, DRAIN_SIZE, "Rear", "Bottom")

 ' This can be taken from an iLogic snippet, and is used to insert components into assemblies

 ' This code inserts the selected end connection part or assembly into our master tank assembly file

 ' Instead of placing at the origin, it places it based on our input matrix we created (matrixK)

 ' Note that we are grounding all geometry, and we are not using any constraints to place the end connection

 Dim componentK = Components.Add("Rear Drain:1", strRearDrainFlangeName, position := matrixK, grounded := True, visible := True, appearance := Nothing)

 ' We create a location point and place the pipe, to complete the components needed for the rear drain

 Dim pointL = ThisDoc.Geometry.Point(0, -TANK_OD / 2 + DRAIN_SIZE, -(TANK_L / 2 + (DRAIN_SIZE / (TANK_OD / 2)) * DISH_DEPTH + 9 in))

 Dim componentL = Components.Add("Rear Drain Pipe:1", strDrainPipeName, position := pointL, grounded := True, visible := True, appearance := Nothing)

 End If

End Sub

Sub CreateAndConfigureSump()

 ' This code creates a new copy of the sump assembly template and places it in our new folder structure

 ' It then updates the sump geometry based on values we pass to the assembly

 Dim strNewSumpFilename As String

 ' This string represents the new name of our unique, copied sump assembly file

 strNewSumpFilename = PROJECT_PATH & PROJECT_ID & "\Sump Assy\Sump Pipe Assy - " & PROJECT_ID & ".iam"

 ' We first check to make sure the sump assembly file has not been previously created

 ' If it hasn't yet been created, we do a Windows Copy operation to make a new copy in our new folder

 ' We also make copies of the part files that will go into our sump assembly

 If System.IO.File.Exists(strNewSumpFilename) = False Then

 System.IO.File.Copy(TEMPLATE_PATH & "Sump Assy\Sump Pipe Assy.iam", PROJECT_PATH & PROJECT_ID & "\Sump Assy\Sump Pipe Assy - " & PROJECT_ID & ".iam")

 System.IO.File.Copy(TEMPLATE_PATH & "Sump Assy\Sump-Angled Pipe.ipt", PROJECT_PATH & PROJECT_ID & "\Sump Assy\Sump-Angled Pipe - " & PROJECT_ID & ".ipt")

 System.IO.File.Copy(TEMPLATE_PATH & "Sump Assy\Sump-Straight Pipe.ipt", PROJECT_PATH & PROJECT_ID & "\Sump Assy\Sump-Straight Pipe - " & PROJECT_ID & ".ipt")

 ' This here is a sample of how to make a variable that represents an assembly document

 ' It uses the Inventor API, which you can use freely (for the most part) throughout iLogic rules

 Dim oSumpAssy As Inventor.AssemblyDocument

 ' This statement tells oSumpAssy to represent the newly created file, and opens it up in the Inventor interface

 oSumpAssy = ThisApplication.Documents.Open(strNewSumpFilename, True)

 ' When the copied sump assembly initially opens, it will reference the old part files in our template folder

 ' We need to change that so that the newly copied angle and straight pipe files are referenced by the assembly

 ' The following code uses the Inventor API functionality to do that

 ' This is similar to selecting the "Replace Components" command in the Inventor application

 Dim strOldAnglePipe, strNewAnglePipe As String

 strOldAnglePipe = TEMPLATE_PATH & "Sump Assy\Sump-Angled Pipe.ipt"

 strNewAnglePipe = PROJECT_PATH & PROJECT_ID & "\Sump Assy\Sump-Angled Pipe - " & PROJECT_ID & ".ipt"

 oSumpAssy.File.ReferencedFileDescriptors.Item(strOldAnglePipe).ReplaceReference(strNewAnglePipe)

 Dim strOldStraightPipe, strNewStraightPipe As String

 strOldStraightPipe = TEMPLATE_PATH & "Sump Assy\Sump-Straight Pipe.ipt"

 strNewStraightPipe = PROJECT_PATH & PROJECT_ID & "\Sump Assy\Sump-Straight Pipe - " & PROJECT_ID & ".ipt"

 oSumpAssy.File.ReferencedFileDescriptors.Item(strOldStraightPipe).ReplaceReference(strNewStraightPipe)

 ' Once we've updated the file references in the sump assembly file, we can save and then close it

 oSumpAssy.Save

 oSumpAssy.Close

 End If

 ' The sump assembly was created in the exact same orientation as our master tank assembly

 ' This means we don't need to rotate the sump assembly when placing it into the master tank assembly

 ' That means we don't need a matrix, but can just define a point (X, Y, Z coordinates) of where to place it

 Dim pointO = ThisDoc.Geometry.Point(0, -TANK_OD / 2 + SUMP_H, TANK_L / 2)

 ' This can be taken from an iLogic snippet, and is used to insert components into assemblies

 ' This code inserts our newly created sump pipe assembly into our master tank assembly file

 ' Instead of placing at the origin, it places it based on our input point we created (pointO)

 ' Note that we are grounding all geometry, and we are not using any constraints to place the assembly

 Dim componentO = Components.Add("Sump Pipe Assembly:1", strNewSumpFilename, position := pointO, grounded := True, visible := True, appearance := Nothing)

 ' These statements pass parameters from our master assembly file into the sump pipe assembly file

 Parameter("Sump Pipe Assembly:1", "PROJECT_ID") = PROJECT_ID

 Parameter("Sump Pipe Assembly:1", "PROJECT_PATH") = PROJECT_PATH

 Parameter("Sump Pipe Assembly:1", "SUMP_SIZE") = SUMP_SIZE

 Parameter("Sump Pipe Assembly:1", "SUMP_H") = SUMP_H

 Parameter("Sump Pipe Assembly:1", "SUMP_PIPE_PROJ") = SUMP_PIPE_PROJ

 Parameter("Sump Pipe Assembly:1", "TANK_OD") = TANK_OD

 Parameter("Sump Pipe Assembly:1", "DISH_DEPTH") = DISH_DEPTH

 ' Once all the parameters are updated in the sump pipe assembly file, we want to run its update rule

 ' This will allow the sump pipe assembly to update all its own parts and components itself

 iLogicVb.RunRule("Sump Pipe Assembly:1", "Update Children Parts")

 ' Once the sump pipe assembly is created and placed, it still needs an end connection

 ' This uses the "GetFlangeFilename" function (near the bottom of this rule)

 ' It will automatically determine the filename based on flange type, flange end connection, and drain size

 Dim strFlangeName As String = GetFlangeFilename(SUMP_FL_TYPE, SUMP_FL_END, SUMP_SIZE)

 ' This uses the "GetFrontOrRearMatrix" function (near the bottom of this rule)

 ' This will automatically determine the location matrix based on several factors

 Dim matrixP = GetFrontOrRearMatrix(SUMP_FL_TYPE, SUMP_FL_END, SUMP_H, SUMP_PIPE_PROJ, SUMP_SIZE, "Front", "Bottom")

 ' This can be taken from an iLogic snippet, and is used to insert components into assemblies

 ' This code inserts the selected end connection part or assembly into our master tank assembly file

 ' Instead of placing at the origin, it places it based on our input matrix we created (matrixP)

 ' Note that we are grounding all geometry, and we are not using any constraints to place the end connection

 Dim componentP = Components.Add("Sump Valve:1", strFlangeName, position := matrixP, grounded := True, visible := True, appearance := Nothing)

End Sub

Sub InsertInletIntoAssembly()

 ' This code places the inlet nozzle into our assembly

 ' The inlet nozzle consists of a pipe and an end connection (i.e. flange, capped flange, or valve)

 ' The user has the option to place the inlet nozzle on the top of the tank, or the front dish head plate

 ' If they place it on the dish head plate, it must be located near the top of the tank, and not the bottom half

 Dim strInletTubeName, strFlangeFile As String

 ' No new geometry is created for inlets - they only use existing parts from the library

 ' This let's us find the right name of the tube (or pipe) based on the inlet size

 strInletTubeName = LIBRARY_PATH & "Flanges\ANSI B36.10 XS - " & INLET_SIZE & ".ipt"

 ' This code uses our "GetFlangeFilename" function to find the name of the end connection based on

 ' flange type, flange end connection, and inlet size

 strFlangeFile = GetFlangeFilename(INLET_FL_TYPE, INLET_FL_END, INLET_SIZE)

 ' Define the matrices that will be needed to place the inlet nozzle, including the pipe and flange

 Dim matrixM, matrixN As DocumentUnitsMatrix

 Dim strInletPipeBrowserName, strInletFlangeBrowserName As String

 ' If the user wants to place the inlet nozzle on the top, use these locating matrices

 If INLET_LOC = "Top" Then

 ' These strings will be used to set the occurrence names in the browser to indicate they are installed on top of the tank

 strInletPipeBrowserName = "Top Inlet Pipe - " & INLET_SIZE & " Inch:1"

 strInletFlangeBrowserName = "Top Inlet Flange - " & INLET_SIZE & " Inch:1"

 ' This matrix represents the orientation required for the pipe on top of the tank

 matrixM = ThisDoc.Geometry.Matrix(1, 0, 0, 0, 0, 0, -1, TANK_OD / 2 + 6, 0, 1, 0, TANK_L / 2 - INLET_OFF, 0, 0, 0, 1)

 ' The locating matrix will be different for open, capped and valve end connection choices

 If INLET_FL_END = "Open" Then

 ' If the user chooses a welding neck flange, a different offset matrix value will be required for the Y (up) direction

 If INLET_FL_TYPE = "Welding Neck" Then

 matrixN = ThisDoc.Geometry.Matrix(0, 1, 0, 0, -1, 0, 0, TANK_OD / 2 + dblFlangeOffsetDistance + 9 in, 0, 0, 1, TANK_L / 2 - INLET_OFF, 0, 0, 0, 1)

 Else

 matrixN = ThisDoc.Geometry.Matrix(0, 1, 0, 0, -1, 0, 0, TANK_OD / 2 + dblFlangeOffsetDistance + 6 in, 0, 0, 1, TANK_L / 2 - INLET_OFF, 0, 0, 0, 1)

 End If

 ElseIf INLET_FL_END = "Capped" Then

 matrixN = ThisDoc.Geometry.Matrix(1, 0, 0, 0, 0, 0, 1, TANK_OD / 2 + 6, 0, -1, 0, TANK_L / 2 - INLET_OFF, 0, 0, 0, 1)

 Else

 matrixN = ThisDoc.Geometry.Matrix(1, 0, 0, 0, 0, 0, 1, TANK_OD / 2 + dblFlangeOffsetDistance + 7 in, 0, -1, 0, TANK_L / 2 - INLET_OFF, 0, 0, 0, 1)

 End If

 ' If the user wants to place the inlet nozzle on the front, this is the code that will be used to create the location matrices

 Else

 ' These strings will be used to set the occurrence names in the browser to indicate they are installed on top of the tank

 strInletPipeBrowserName = "Front Inlet Pipe - " & INLET_SIZE & " Inch:1"

 strInletFlangeBrowserName = "Front Inlet Flange" & INLET_SIZE & " Inch:1"

 Dim dblDishOffset As Double = TANK_L / 2 + (INLET_OFF / (TANK_OD / 2)) * DISH_DEPTH + 6

 matrixM = ThisDoc.Geometry.Matrix(-1, 0, 0, 0, 0, 1, 0, TANK_OD / 2 - INLET_OFF, 0, 0, -1, dblDishOffset + 4, 0, 0, 0, 1)

 ' Since we created a function (GetFrontOrRearMatrix) that figures out location matrices on the front and rear dish plates,

 ' we can take advantage of that and don't need to figure them out separately, like we had to for the top

 matrixN = GetFrontOrRearMatrix(INLET_FL_TYPE, INLET_FL_END, INLET_OFF, 10, INLET_SIZE, "Front", "Top")

 End If

 ' These are the iLogic commands to add the pipe and flange components to the assembly, and place them properly based on the matrices

 Dim componentM = Components.Add(strInletPipeBrowserName, strInletTubeName, position := matrixM, grounded := True, visible := True, appearance := Nothing)

 Dim componentN = Components.Add(strInletFlangeBrowserName, strFlangeFile, position := matrixN, grounded := True, visible := True, appearance := Nothing)

End Sub

Function GetFlangeFilename(strFlangeType As String, strFlangeEnd As String, dblSize As Double) As String

 ' This function determines the full path and filename of the end connection that is needed, based on the flange type,

 ' flange end connection, and size

 Dim strFilename As String

 ' If the end connection is "Open", then we just return a flange part

 If strFlangeEnd = "Open" Then

 strFilename = LIBRARY_PATH & "Flanges\ASME B16.5 Flange " & strFlangeType & " - Class 150 " & dblSize & ".ipt"

 ' If the end connection is "Capped", then we find which pre-created assembly includes the desired flange and cap

 ' The files in the library were setup with a consistent naming convention so that it was easy to derive the filenames

 ' based on this information

 ElseIf strFlangeEnd = "Capped" Then

 strFilename = LIBRARY_PATH & "Flanges\" & strFlangeType & " to Blind - " & dblSize & ".iam"

 ' If the end connection is "Valve", then we find which pre-created assembly includes the desired flange and butterfly valve

 ' The files in the library were setup with a consistent naming convention so that it was easy to derive the filenames

 ' based on this information

 Else

 strFilename = LIBRARY_PATH & "Valves\Butterfly\" & dblSize & " Inch\" & strFlangeType & " to Threaded Valve - " & dblSize & ".iam"

 End If

 ' Set our resulting filename string to the GetFlangeFilename function so that it can be returned to our calling statement

 GetFlangeFilename = strFilename

End Function

Function GetFrontOrRearMatrix(strFlangeType As String, strFlangeEnd As String, dblVertOffset As Double, dblCustomHorOffset As Double, _

 dblFlangeSize As Double, strSide As String, strTopOrBottom As String) As DocumentUnitsMatrix

 ' This function returns a matrix object that is derived based on all of its inputs

 ' It is only good for matrices on the front dish head plate, and the rear dish head plate, and only for end connections

 ' That includes flanges, caps and valves

 Dim matrixReturn As DocumentUnitsMatrix

 ' This variable calculates the length from the center of the tank to the outside edge of the tank body

 ' It then approximates the dish head plate depth using a linear formula (which isn't always the most accurate)

 ' The goal is to get the distance as from tank centerline to the outside edge of the tank, including the dish head plate

 Dim dblDishOffset As Double = TANK_L / 2 + (dblVertOffset / (TANK_OD / 2)) * DISH_DEPTH

 ' This uses the "GetFlangeOffsetDistance" function to get the initial offset values based on the type of end connection

 Dim dblFlangeOffset As Double = GetFlangeOffsetDistance(strFlangeType, strFlangeEnd, dblFlangeSize)

 Dim dblYValue, dblZValue As Double

 ' We need to know if the end connection will be on the upper half of the tank, or the lower half of the tank

 ' If it's on the upper half, our Y location value will be positive

 ' If it's on the lower half, our Y location value will be negative

 If strTopOrBottom = "Top" Then

 dblYValue = TANK_OD / 2 - dblVertOffset

 Else

 dblYValue = -TANK_OD / 2 + dblVertOffset

 End If

 ' For "Open" end connections, calculate our Z location value, and create one matrix for the front, and one for the rear

 ' The reason front and rear placement matrices differ, is that a flange has to be rotated 180-degrees if it's placed

 ' on the rear dish head; in other words, you always want the flanges pointing away from the tanks

 If strFlangeEnd = "Open" Then

 dblZValue = dblDishOffset + dblFlangeOffset + dblCustomHorOffset - 6 in

 If strSide = "Front" Then

 matrixReturn = ThisDoc.Geometry.Matrix(0, 0, 1, 0, 0, 1, 0, dblYValue, -1, 0, 0, dblZValue, 0, 0, 0, 1)

 Else

 matrixReturn = ThisDoc.Geometry.Matrix(0, 0, -1, 0, 0, 1, 0, dblYValue, 1, 0, 0, -dblZValue, 0, 0, 0, 1)

 End If

 ' For "Capped" end connections, calculate our Z location value, and create one matrix for the front, and one for the rear

 ElseIf strFlangeEnd = "Capped" Then

 dblZValue = dblDishOffset + dblCustomHorOffset

 If strSide = "Front" Then

 matrixReturn = ThisDoc.Geometry.Matrix(1, 0, 0, 0, 0, 1, 0, dblYValue, 0, 0, 1, dblZValue, 0, 0, 0, 1)

 Else

 matrixReturn = ThisDoc.Geometry.Matrix(-1, 0, 0, 0, 0, 1, 0, dblYValue, 0, 0, -1, -dblZValue, 0, 0, 0, 1)

 End If

 ' For "Valve" end connections, calculate our Z location value, and create one matrix for the front, and one for the rear

 Else

 dblZValue = dblDishOffset + dblCustomHorOffset + 1 in

 If strSide = "Front" Then

 matrixReturn = ThisDoc.Geometry.Matrix(1, 0, 0, 0, 0, 1, 0, dblYValue, 0, 0, 1, dblZValue, 0, 0, 0, 1)

 Else

 matrixReturn = ThisDoc.Geometry.Matrix(-1, 0, 0, 0, 0, 1, 0, dblYValue, 0, 0, -1, -dblZValue, 0, 0, 0, 1)

 End If

 End If

 ' Set our resulting matrix to the GetFrontOrRearMatrix function so that it can be returned to our calling statement

 GetFrontOrRearMatrix = matrixReturn

End Function

Function GetFlangeOffsetDistance(strFlangeType As String, strFlangeEnd As String, dblFlangeSize As Double) As Double

 ' This function determines what the initial flange offset distance should be for any end connection based on its

 ' flange type, flange end connection, and size

 ' It's pretty straight forward and just assigns empirically derived offset values based on the type of end connection

 Dim dblFlangeOffsetDistance As Double

 If strFlangeType = "Welding Neck" Then

 If dblFlangeSize = 3 in Then dblFlangeOffsetDistance = 8.5 in

 If dblFlangeSize = 4 in Then dblFlangeOffsetDistance = 9 in

 If dblFlangeSize = 6 in Then dblFlangeOffsetDistance = 9.5 in

 If dblFlangeSize = 8 in Then dblFlangeOffsetDistance = 10 in

 Else

 If dblFlangeSize = 3 in Then dblFlangeOffsetDistance = 6.25 in

 If dblFlangeSize = 4 in Then dblFlangeOffsetDistance = 6.31 in

 If dblFlangeSize = 6 in Then dblFlangeOffsetDistance = 6.56 in

 If dblFlangeSize = 8 in Then dblFlangeOffsetDistance = 6.5 in

 End If

 If strFlangeEnd = "Valve" Then dblFlangeOffsetDistance = dblFlangeOffsetDistance + 1 in

 GetFlangeOffsetDistance = dblFlangeOffsetDistance

End Function

