

' This rule is used to place the shell plates in the tank body assembly

' It uses constraints to place each shell, and staggers them so that the seam

' alternates from one side of the tank to the other

Dim intTotalShells As Integer

' This variable calculates how many total shells is needed for this assembly

' This is based on the length of the tank, combined with information in the Excel spreadsheet

intTotalShells = SHELL_Q_1 + SHELL_Q_2

' The template had two pre-built constraints that would fail after running through the automation

' I found that I could fix them by just creating them at run time, rather than having them

' pre-baked into the template

' This happens sometimes, and you need to be creative to work around certain issues

Constraints.AddMate("Mate:1", "ASME Dished Head:1", "Work Plane2", "",

 "XY Plane", TANK_L / 2 ul)

Constraints.AddMate("Flush:2", "ASME Dished Head:2", "Work Plane2",

 "ASME Dished Head:1", "Work Plane2", TANK_L)

' First create the shell files in your local directory

Dim strOldFilename As String

Dim strNewFilename1, strNewFilename2 As String

strOldFilename = TEMPLATE_PATH & "\Tank Body Assy\Shell.ipt"

' These lines of code create copies of the shell plates, and give them filenames that include the shell width

If SHELL_Q_1 >= 1 Then

 strNewFilename1 = PROJECT_PATH & PROJECT_ID & "\Tank Body Assy\Shell - " & SHELL_W_1 & " Wide - " & PROJECT_ID & ".ipt"

 System.IO.File.Copy(strOldFilename, strNewFilename1)

End If

' Some tank lengths don't need two different widths in order to get the length to come out properly

' In that case, we don't want to create another shell plate model if we don't need it

If SHELL_Q_2 >= 1 Then

 strNewFilename2 = PROJECT_PATH & PROJECT_ID & "\Tank Body Assy\Shell - " & SHELL_W_2 & " Wide - " & PROJECT_ID & ".ipt"

 System.IO.File.Copy(strOldFilename, strNewFilename2)

End If

Dim strNewFilename As String

Dim intShellWidth As Integer

Dim intRunningLength As Integer

' This variable will track our progress as we move down the tank and place the individual shell plates

intRunningLength = 0

' This For loop is the meat of placing the shell plates into our assembly

For j = 1 To intTotalShells

 ' If j is less than the total number of shell plates with thickness 1, then we need to insert more shell

 ' plates with thickness 1

 ' Otherwise, we need to insert new shell plates with thickness 2 (represented by the "SHELL_W_2" parameter

 If j <= SHELL_Q_1 Then

 strNewFilename = strNewFilename1

 intShellWidth = SHELL_W_1

 Else

 strNewFilename = strNewFilename2

 intShellWidth = SHELL_W_2

 End If

 ' Add the part to the assembly

 Dim strBrowserName As String

 ' We are now ready to add the shell plates into our tank body assembly

 ' Note that we first define how we want the occurrence name of each shell plate to be listed in the model browser

 ' Then we place them into the assembly (at the origin)

 strBrowserName = "Shell " & intShellWidth & " Wide:" & j

 Dim oShell = Components.Add(strBrowserName, strNewFilename)

 ' The Mod operator returns the remainder of a division calculation

 ' In this case, if j is 1, 1 divided by 2 has a remainder of 1 (the answer is 0, with a remainder of 1)

 ' If j is 2, then 2 divided by 2 is 1, and there is no remainder

 ' This trick lets us alternate what constraints we use as we place each shell plate

 If j Mod 2 = 1 Then

 ' Notice that we use our "intRunningLength" variable to create an offset value for each new plate that gets placed

 ' Then at the end of the routine, we increase the value of "intRunningLength" by the current shell width,

 ' so that when we place the next shell, we have the next offset value ready to go

 Constraints.AddFlush("Flush:" & 8 + (j - 1) * 3 + 1, "", "YZ Plane", strBrowserName, "YZ Plane")

 Constraints.AddFlush("Flush:" & 8 + (j - 1) * 3 + 2, "", "XZ Plane", strBrowserName, "XZ Plane")

 Constraints.AddFlush("Flush:" & 8 + (j - 1) * 3 + 3, strBrowserName, "XY Plane", "",

 "Work Plane1", intRunningLength + intShellWidth / 2 in)

 Else

 Constraints.AddMate("Mate:" & 8 + (j - 1) * 3 + 1, "", "YZ Plane", strBrowserName, "YZ Plane")

 Constraints.AddFlush("Flush:" & 8 + (j - 1) * 3 + 2, "", "XZ Plane", strBrowserName, "XZ Plane")

 Constraints.AddMate("Mate:" & 8 + (j - 1) * 3 + 3, "", "Work Plane1", strBrowserName,

 "XY Plane", (intRunningLength + intShellWidth / 2) * -1 in)

 End If

 ' We don't need to push parameters for each instance if the parts are the same model

 ' This finds the first instance of shell width 1, and the first instance of shell width 2, and then passes

 ' the "TANK_OD" and "SHELL_W" parameters

 If j = 1 Or j = SHELL_Q_1 + 1 Then

 Parameter(strBrowserName, "TANK_OD") = TANK_OD

 Parameter(strBrowserName, "SHELL_W") = intShellWidth

 End If

 intRunningLength = intRunningLength + intShellWidth

Next

' This next bit of code uses the Inventor API to suppress the assembly cuts for the manway and gunline if they are not used

' in the assemblies

Dim oShellAssy As AssemblyDocument

oShellAssy = ThisApplication.Documents.ItemByName(PROJECT_PATH & PROJECT_ID & "\Tank Body Assy\Tank Body Assy - " & PROJECT_ID & ".iam")

Dim oAssyDef As AssemblyComponentDefinition = oShellAssy.ComponentDefinition

If MANWAY = False Then oAssyDef.Features(1).Suppressed = True

If GUNLINE = False Then oAssyDef.Features(

